

ww-004 For further details

1000 Series Thenew generation Oscilloscopes

It had to happen...the NEW 1000 series a new generation of easy-to-use, economy line 'scopes offering the flexibility that you the customer demanded and from who else but Telequipment, world leaders in low cost 'scopes.

TELEQUIPMENT < 霊>

YOUR COMPLETE RANCE OF ELEGTRONIC HARDWARE,

BIMENCLDSURES MINI DESK BIMCONSOLES MULTI PURPOSE BIMBOXES
 INI DESK BIMCONSOLES
Orange, Blue, Black or
G Gryer ABS body in-
corporates 1.8 mm pcb
guides. standoft obsses
base with 4 4IMFET in base with 4 BIMFEET
pplied. 1 mm Gry
receminius
recesed with fixing screws
into integral brass bushes.
BIM $100(101 \times 96 \times 5 \times 5 \mathrm{~m})$
BIM $1006(215 \times 130 \times 75 \mathrm{~mm})$
$£ 2.18$
$£ 3.05$

12 Volt bimdrills
2 small, powerful drills easily hand held of
Integral on//ff switch and 1 metre cable.

Accessory Kits 1 have appropriate ed rills sand colletas sa above plus 20 assorted
ools. Mini Kit $1-£ 15.12$, Major Kit $1-£ 19.44$. Accessory Kits 2 have appro

$\substack{\text { Major } \\ \text { Mini K } \\ \hline}$

\qquad

BIM $6005(143 \times 105 \times 55.5[31.5] \mathrm{mm})$
BIM $6006(143 \times 170 \times 55.5[31.5] \mathrm{mm})$
$£ 3.08$
:---
BIM $6007(214 \times 170 \times 82.0(31.5) \mathrm{mm}) \quad £ 4.12$
10

body accepts full or $1 /$ size body accepts full or $1 /$ size
Euroard, with bosses in the
base for direct fixing. 1.8 mm Wide pob guides incorporated
4 BIMFEET supplied. 1 mm and 4 BIM FEET supplied. 1 mm
Grey aluminium lid sits flush with body

BIMEOARDS

 compatibl BIMBOARDS

Accept all sizes
1450 oinl of DIL 10
packages as well as packages as well as
resistors, diodes, resistors, diodes,
capacitor san LEDs.
Integral Bus Strips. Integral Bus Strip
up each side for up each side for
power ines and
Component Sup Component Suport
rackent for holding
lamps,
fuses etc. Aves.and
andiable. as single or multiole units, the latter mounted on 1.5 mm thick
black aluminium back plate which stand o black aluminium back plate which
nor slip ruber feet and have 4 4 scre
terminals for incoming power.
BIMBOARD 1 has 550 sockets, multiple units

BIMBOARD 1 £ 8.83
BIMBOARD 2 £21.01
BIMBOARD 3 £29.84
BIMBOARD 4 £ 38.79
DESIGNER PROTOT YPING SYSTEM 1, 2. or 3 BIMBOARDS mounted on BIM 6007
Bíconsole with Integral Power Supply (± 5 to $\pm 15 \mathrm{Vdc}$ @ 10 mA and fixed $+5 \mathrm{Vdc} @ 1 \mathrm{~A}$ All 1 P'P stull isolated. Short circuit and fast
back protection Powe rails brount out to cab
clamps that accept stripend wire or 4 mm plug. blamps that accept stripped wire or 4 mm plu
clat DESIGNER 1 f55.62
DESIGNER 2 f61.02
DESIGNER 3 f66.42

> Type M3 Precision 17 watt iron,
quick change tip, Iong life

120 BASIC RANGES

$A C V, 1 \& d B$
DC V, I \& NULL
RESISTANCE
LEAKAGE at $3 V$
VOLT DROP at 10 mA
$50 \mu \mathrm{~V} / 500 \mathrm{~V}$ fsd, $50 \mathrm{pA} / 500 \mathrm{~mA}$ fsd,$-90 \mathrm{~dB} /+50 \mathrm{~dB}$ mid scale. Acc. $\pm 1.5 \%$ fsd above $500 \mu \mathrm{~V}$ \& 500 pA Response $\mathrm{Hz} / 200 \mathrm{kHz}$ above $500 \mu \mathrm{~V}$ and 500 nA . Input $\mathrm{R}=100 \mathrm{M} \Omega$ on volts.
$150 \mu \mathrm{~V} / 500 \mathrm{~V}$ fsd, $150 \mathrm{pA} / 500 \mathrm{~mA}$ fsd, polarity reversible. Acc. $\pm 1.5 \%$ fsd above $500 \mu \mathrm{~V} \& 500 \mathrm{pA}$. Input $R=100 \mathrm{M} \Omega$ on volts. 5 Null ranges have centre zero lin $/$ log scale covering ± 4 decades $0.2 \Omega / 10 \mathrm{G} \Omega$ in 7 ranges, polarity reversible. Low test voltage for solid state circuits. Uses $3 V$ source with current ranges to test capacitors, diodes and resistance up to $100 \mathrm{G} \Omega$.
Uses 10 mA source with voltage ranges to test diodes, LED's and resistance down to $10 \mathrm{~m} \Omega$.

30 OPTIONAL RANGES

RF VOLTS
HIGH VOLTS
HIGH CURREN
TEMPERATURE
$0.5 \mathrm{~V} / 500 \mathrm{~V}$ fsd, $10 \mathrm{kHz} / 1 \mathrm{GHz}$, using RF Probe. Price $£ 26+\mathrm{VAT}$
 $\begin{array}{ll}: & -150^{\circ} \mathrm{C} /+500^{\circ} \mathrm{C} \mathrm{C} \text { fsd in } 7 \text { ranges using Temperature Probe. Price } £ 43+\text { VAT. }\end{array}$

The instrument operates from a 9 volt battery, life 1000 hrs., or, AC mains when optional Power Supply Unit is fitted Size is $240 \mathrm{~mm} \times 150 \mathrm{~mm} \times 80 \mathrm{~mm}$. Weight is 1.75 kg . Meter scale length is 140 mm . Leather case is available at $£ 16+$ VAT

LEVELL alegranics Lto.

Measure Resistance to 0.01Ω
At a Price that has no resistance at all

ONLY £55

THE ULTIMATE IN PERFORMANCE - MEASURES RESISTANCE TO 0.01 OHMS, VOLTAGE TO 100 MICROVOLTS, CURRENT TO 1 MICROAMPS AT LOWEST EVER PRICE!

URES		SPECIFICATIONS:
- $31 / 2$ digits 0.56 " high LED for easy reading	dc Volts	Range $200 \mathrm{mV}, 2 \mathrm{~V}, 20 \mathrm{~V}, 200 \mathrm{~V}, 1000 \mathrm{~V}$ Accuracy $1 \%+1$ digit, Resolution 1 mV
- $100 \mu \mathrm{~V}, 1 \mu \mathrm{~A}, 0.01 \Omega$ resolution		Accuracy $1 \% \pm 1$ digit, Resolution . 1 m Overload protection 1,000 volts max
- High input impedance 10 Megohm	AC Volts	
- High accuracy achieved with precision resistors, not unstable trimpots	DC Current	Accuracy $1.5 \% \pm 2$ digits, Resolution .1 mV Overload protection 1000 V max, 200 mV scale 600 V Range $\mathbf{2 m A}, 20 \mathrm{~mA}, \mathbf{2 0 0} \mathrm{~mA}, 2 \mathrm{amp}$.
Input overload protected to 1000 V (except		Accuracy $1 \% \pm 1$ digit, Resolution 1 Microamp
200 mV scale to 600 V)	AC	A, $20 \mathrm{~mA}, 200$
Auto zeroing, autopolarity		Accuracy $1.5 \% \pm 2$ digits, Resolution 1 Microan
- Mains (with adaptors not supplied) or battery operation-built-in charging circuitry for NiCads	Resista	Overload protection -2 amp fuse and diodes Range 20, 200, 2K, 200K, 2 Meg. 20 Meg. Accuracy $1 \% \pm 1$ digit, Resolution .01 ohms
- Overrange indication	Environmental	Temp coefficient 0° to ${ }^{\text {a }} 0^{\circ} \mathrm{C} \pm .025 \%^{\circ} \mathrm{C}$
- Hi Low power ohms, Lo for resistors in circuit, Hi for diodes	General	Mains adaptor: 6 .9 Volts @ 200 mA (not supplied) 4C size batteries (not supplied)

At $£ 55, \mathrm{M} 1200 \mathrm{~B}$ is the best buy among DMM's currently available. It 0.01 ohms resolution allows you to detect shorted wind-
ings in coits transformers or motors. It is also useful in checking low contact resistance in switches, relays ings in coils, transformers or motors. It is also useful in checking low contact resistance in switches, relays or connectors. Poor
solder connections can also be spotted. The low power ohms function permits accurate measurements of in circuit resistance solder connections can also be spotted. The low
without forward biasing semiconductor junctions.

You have been waiting a long time for a digital multimeter with all these features at a price like this. Now its yours.
Also available from retail shops:
Audio Electronics, 301 Edgware Rd,London W2 Z \& I Aero Services, 85 Tottenham Court Road
London W. 1 London W. 1
*agents wanted
ME

ELENCO PRECIIION Sole UK Distributor

ME Maclin-Zand Electronics Ltd 38 Mount Pleasant, London WC 1XOAP Tel. $01-8371165$ or Hemel Hempstead (0442) 832966 Telex. 8953684 MACLIN G

To: Maclin-Zand Electronics
$-ー-7$ 1st Floor, Unit 10, East Block
ww6 38 Mount Pleasant, London WC1X OAP
Please send me DMM M1200B @ £62.64 inc. p \& $\mathrm{p}+\mathrm{VAT}$ (overseas $\mathrm{f60}$) I enclose cheque/P.o./Bank Draft for f
Name
Address \qquad lelock

Callstore, from Racal Recorders, answers all the questions.

THE JAMES ScOTT INDUSTRIAL MTMGEOMUTOMRO RANGE DF EQUIPMENT

The James Scott range of Microwave equipment offers industrial users a greater choice of alternative systems in
robust, industrial, cast aluminium housings, for a wide variety of applications.
he range is made up of standard sub-assemblies which can be permutated to suit individual application equirements. Here are some sugge
applications for

Quad dealers in the South East.

Bedfordshire

Bedford: Anglia Audio - Audio \& Visual Systems Kempston : Bedford Audio Supplies
Luton : B \& B Hi-Fi-Coventry Radio - D. P. Hobbs Berkshire
Berkshire
Bracknell : Sewards (Electrical) Newbury : Povey Wade Reading: B \& B Hi-Fi-L. J. Gale - Reading Cassette \& Hi-Fi Centre Wokingham:
Sewards (Electrical)
Buckinghamshire
High Wycombe : \& Bi-Fi - Hughes.
High Wycomb
Hertfordshire
Harpenden : Studio 99 Hitchin : The Record Shop
Haplett: The Recorderie St Albans: W. Darby
Watford: F. D. Bailey - K. J. Leisuresound.
Kent ${ }^{1}$
Ashford: Photocraft Broadstairs: Thanet Mobile Vision Canterbury: Hi-Fi Shop Chatham : Medway
Electronics Dover:Hi-Fi Shop Gillingham: Audio Electronics Dover: Hi-Ti Shop Glingham:Audio
Hypermarket Hythe : The Camera Shop Maidstone Hypermarket Hettithergate : Thornton Bobby Ramsgate: Tom Joyce Sevenoaks: Sevenoaks HiCentre Tonbridge : Standens Tunbridg
Oxfordshire
Henley: G. O. Moorhen Oxford: Horns - Lasky's Radio - Westwoods Wallingford : Astley Audi Witney : Witney Audio Centre.
Surrey
Dorking : Alan Laurenson Epsom: Oakey \& Lee Farnham: Lloyd \& Keyworth Godalming: Jim Parke Hi-Fi Guildford: Guildford Hi -Fi - Merrow Sound P. J. Equipments Reigate : Alan Laurenson

Woking: Aerco Records.
Susssex
oognor Regis: T. F. W. Bryan Hi-Fi Centre Crawley : Kirkman King (Films) Complete Audio Systems ast Grinstead : John Rees Hi-Fi Hove: Sound : Merrow Sound Rottingdean : Stinson's Rottingdean: Stinson's (Radio \& TV) Uckfield: The Music Shop Worthing : Bowers \& Wilkins.
For details of QUAD dealers in other areas, write to The
Acoustical Manufacturing Co .

QUAD

or the closest approan

If walls had ears?

We can t possibly use an output condenser, it must cut the
bass mustn't it ? And what about the damping?
"And no output transformer, what with all that hysteresis
and iron distortion.
"Pentodes ? Tetrodes ?",
"No, No, nothing but triodes will do."
"Triodes then, but wait, we can't have all that accumulated Miller effect.
"Oh no, this year's crop are all hard and brittle,"
"And that see-saw phase splitter, it's asymmetrical; if we fed a square wave
"But what have square waves to do with programme ?" "Shut up, that's irrelevant.
"Class B? But doesn't that always produce crossover
"Ah! Feedback will cure all,"
"No, No, we've read that too much feedback causes TID or something.'
Of course, these things have little or nothing to do with good or bad amplifier design, and are not at all what you might overhear in our laboratory zzzzzzzzz For further details on the full range of QUAD products write to
The Acoustical Manufacturing Co. Ltd.
Huntingdon, Cambs. PE18 7DB
relephone (0480) 52561

OUAD

for the closest approach to the original sound

Choose video equipment with all these names in mind.

Above: a new, complete and outstanding video system from JVC.
One three-tube colour camera, of studio quality but portable. Two
editing U-format video One three-tube colour camera, of studio quality but portable. Two
editing U-format video cassette recorders. One automatic editing
control unit. Designed to meet broadcastrequirements, and therefore excellent in any other application, they should be seen in action before deciding how to re-equip a video production centre which
aims at the highest standards (though by no means at the highest current price).
At the other end of the comprehensive JVC range is lo $\cdot \boldsymbol{N}$-cost
equipment for surveillance and simila tasks. Between the extremes: a wide choice of b / w and colour cameras and recorders (reel-to-ree a wide choice of b / w and colour cameras and recorders (reel-to-ree
and U -format). And now, of course, VHS -VHS made by the people who invented and developed it, JVC.

For leaflets about JVC video products or, still better, a video tapes, worth reading about because their exclusive Beridox
coating is so good for the picture coating is so good for the picture.
Well also tell you about the third name in our headline,
Supershield. This is a new and, we believe uniqu euaranter covering all video and audio-visual products, made or distributed by Bell \& Howell (excluding only camera tubes, tapes and projecto
lamps). For two years after purchase, Supershield gives free

Gechnical advice, free parts with no labour charges, and (in mainland Gupershield workshops and free delivery back to you whon the Supershield workshops and free delivery back to you when the job
is done. JVC plus Bell \& Howell was already a strong combination. JVC plus Bell \& Howell plus Supershield, plus a national network of first-class dealers, should be unbeatable.
 Ietase tick squaresis in in your name, cip coupon to
letterhead and mail an anstamped nevvelope to
Bell $\&$ Howell $A-V$ Ld
Leate Bell \& Howell A-V
Leaflets, please, on:
\square products
\square products generally$\square^{\mathrm{JVC}} \mathrm{VHS}$
\square arrangements
Name
回 BelleHowell

The Ultimate malt-mate

It's easy to see why Philips PM 2517 digital multimeter is called The Ultimate Multi-mate No other DMM comes anywhere near its

Full 4 -digit display giving higher resolution than $31 / 2$ digits for 80% of measurements. Parameter readout, too.
Choice of LED or LCD display - choose the one that suits you, the price is the same. Mains unit supplied free with LED version. Autoranging with manua override. Average auto response time
two seconds.
True RMS rather than
"average" detection. The Ultimate Multi-mate measures nonsinewave AC signals High accurately High accuracy necessary to make
full use of those four digits. An impressive 0.2% of reading $\pm 0.05 \%$ of scale on d.c.

Current to 10A
via a separate
input is
nput is
standara, not
optional, on
optional, on
the PM 2517.
Overload protection
that is so comprehensive you
have to try very hard to do any
damage, even with mains and TV
booster voltages.

The Ultimate Multi-mate is available from Wessex Electronics Ltd., 114 - 116 North Street,
Rank Radio International, Watton Road, Ware, Herts. (Tel: Ware 3966)
and Philips Service Centres
('phone 01-686-0505 for the address of your nearest branch)
combination of laboratory performance and hand form - for such a handy price. Take a look at some of the features it packs in.

Small and sturdy construction makes this DMM ideal for bench or field work.

Ergonomic design allows it to work in any position

Phlub Test\&Measuring

Instruments
PHILIPS

Hilomast Lto

PNEUMATIC
TELESCOPIC

HILOMAST LIMITED THE STREET HEYBRIDGE - MALDON Tel MALDON Tel. MALDON (062115648 WW-010 FOR FURTHER DETALLS

NEC -
NIPPON ELECTRIC $\begin{aligned} & \text { AMATEUR } \\ & \text { COMMIPMNIICATION }\end{aligned}$
NIPPON ELECTRIC EQUIPMENT

 0.2 w vor 20 ob 8 SM .

CEC
sole distributor europe of NEC SOLE OISTRIBUTOR EUROPE ORNE
RADIO AMATEUR ANO CE EQUIPMENT
 wW- 024 FOR FURTHER DETALS

At the end of the test session the communications engineer sang the praises of our filiters.

"What performance" he said, referring to the
 engineers in many fields are equally complimentary about our supporting range of Active Filter Modules and our Custom-Built Filter Service.

We have fully descriptive literature which will generate similar enthusiasm in yourself. Use the journal reply system or call us, Barr \& Stroud Limited (Dept.ww/s). Melrose House, 4-6 Savile Row, London WIX 1AF. Telephone: 01-437 9652. Telex: 26187
EF3 Variable Filter System
Designed on a modular basis to give flexibility in use and to match your budget. A plug-in systen anywhere where signal conditioning is required Filter units can be used separately or combined to give a wide variety of functions from low-pass to
band-separate. The current pass-band capacity is from d.c. Active Filter Module

The ready-to-use convenience of small, encapsulated filter units, each with a basic
function. No filter knowledge required to set up for specific characteristic or cut-off frequency. These filters are equally suited to the one-off lab. application and the
large quantity production requirement. large quantity production requirement.
Available in low-pass, high-pass, universal and notch designs with a range of cut-off frequencies and attenuation rates.
Custom-Built Filters
The basis of our filter activity, this service has specific requirements. Based on in-hous computer facilities and an extensive programme library we can design and
manufacture the filters not provided in our standard range.
Designs can be passive or active
with cut-off rates up to several hundre with cut-off rates up to several hundred dB per octave in a fr.
to around 70 MHz .
 adds to your resources
ELECTRONICFILTERS OPTICAL FILTERS, EIRRE OPTICS
LASERS. SCIENTIFIC AD MEDICAL INSTRUMENTATION
A member of the Pilkington Group

The use of a Fibre Optic Recorder in the unique Raster mode with allows digital data to be recorded in an ideal format for visual inspection Typically a test word would be transmitted through a system with the output digital data applied as brilliance modulation to the FOR The word marker triggers the timebase which would be adjusted to cover one word across the paper. The paper speed is adjustable to just producing a uniform pattern on a producing a uniform pattern on a Disturbances due to data change, errors and drop-outs are very
obvious. Resolution and bandwidth are adequate to resolve 265 bit words at 9600 bands. Medelec Fibre Optic Recorders are also used for research and development in Video Imaging, Noise and Vibration, Transients and many other fields.

medelec

MEDELEC LIMITED Manor Way, Woking, Surrey Telephone:
Woking (04862) 70331 Telex: 859141 Medlec G
wW - 005 FOR FURTHER DETAILS
ww - 005 FOR FURRIDDALS

(3)

 L SERIES SOLDERING IROLIS

These entirely new irons are designed to meet the latest advantages.
The LE40 has an electronic temperature control circuit fitted inside the handle, and is leakage and transient-free. It operates from 24 VAC power units and is interchangea with many existing irons.
models are versatile high-performance and light-weight irons for mains or low voltage use, and ture screw connections for the flex
Light Soldering Developments Ltd.
97-99 Gloucester Road, Croydon, Surrey CRO 2DN. England.
Telephone 01-689-0574 Telex 8811945
W - 062 FOR FURTHER DETALIS
$\left.\begin{array}{c}\text { PRODUCTION } \\ \text { TESTING } \\ \text { DEVELOPMENT } \\ \text { Now available with } \\ 3 \text { OUTPUTS }\end{array}\right]$

7 HUGHENDEN ROAD, HASTINGS, SUSSEX TN34 3 TG
Telephone: HASTINGS (0424) 436004

IIIIIIIP

UK677 KIT
Stabilized Power Supply 50
Variable Current Limiting
LED Current Limit Indicator
Calibrated Metering for Current and Voltage
Load Regulation
Ripple $<1 \mathrm{mV}$
Ripple $<1 \mathrm{mV}$
Input Voltage $115-220-250$ v A.C. $50-60 \mathrm{~Hz}$
All Aluminium Cabinet
E36.73 + VAT
E36.73 + VAT
Trade and Export Enquiries Welcomed
WW - 050 FOR FURTHER DETAILS

WW - Mo FOR FUPTHER DETATS

BUILD TWO FRES λ^{4} to
PROJECTS ON CSC

ELECTRONICS BY NUMBERS FISH'N'CLIKS Now using EXPERIMENTOR BREAD-
BOARDS and following the instructions "Electronics by Numbers" ANYBODY can build electronic projects. Look at the diagram, this has the same letter/number
system as all EXP BOARSS. Look at the
"YO system as ail EXP BOARDS. Look at the
"YOU WILL NEED" list and select Q1 this
is PNP transistor is PNP transistor type HEP-230. This plugs
into hole $\times 9, A 7$ and $C 9$. NOW take C1, a 50 uF capacitor, and put into holes J
and $J 14$ and do the same with all the components.
NOW YOU HAVE FISH'N'CLIKS

YOU WILL NEED
B1, B2-2×1.5V AAA bateries
C1, $C 2-50$ uF, 12 VDC electrolytic
capacitor
E1-Crystar earphon
O1-Motorola HEP-2
O1- Motorola HEP-230 pnp transistor
R2- 27000 -ohm, $1 /$ watt resisto
S1 - Spst switch,
S1- Spst switch part of R1 500 -ohm center tapped primary to EXP-ANY EXP. BREADBOARD.
The anglers dream come true. This electronic mervel emits a CLIK-CLIK sound that
makes fish really hungry Shove the makes fish really hungry. Shove the whole
works in a watertight container lower it Works in a watertight.container lower it
over the side and wait for the fish to grab
the the hook.
FILL IN THE COUPON AND WE WILL SEND Y FUHLL PROJECT FISH'N'CLIKS, AND A COPY OF PROOECT NO 1 "TWO
PROTO-CLIP TEST CLIPS Brings IC leads up from crowded PC boards.
Availaboe plain or with cable with clips at
one or Available elain or
one or both ends.

$\longrightarrow \square$

Europe, Africa, Mid-East: CSC UK LTD

EXPERIMENTOR BREADBOARDS.
No soldering modular breadboards, simply plug components in and out of letter number identified
nickel-silver contact holl nickel-silver contact holes. Start small and simply
snap-lock boards together to build breadboard of any
size.
All EXP Bread
All EXP Breadboards have two bus-bars as an integral
part of the board, if you need more than 2 buses simply snap on 4 more bus-bars with the aid of an EXP.4B.

EXP. 325.

The ideal breadboard for Accepts 8,14,16 and up to 22 pin IC's. ONLY $£ 1.60$.

EXP.350. £3.15.
 270 contact points with

EXP. 650 for Micro
processors. $£ 3.60$.
EXP 4B.
EXP bus-
bars.
$£ 20$.

PROTO-BOARDS.
THE ULTIMATE IN BREADBOARDS
FOR THE MINIMUM COST
TWO THE MINIMUM COST.
TWI ASSEMBLED KIT
$\bigcirc 0$ O Brolis $x=x^{1} x^{2}$

B. 6 Kit, 630 contacts, four 5 -way binding
posts accepts up to six 44 -pin Dips. PROTO-BOARD 6 KIT. $£ 9.20$.

 inding posts and sturdy base. Large capa PROTO-BOARD 100 KIT $£ 11.80$

HOW TO ORDER AND RECEIVE FREE COPY OF FISH'N'CLIKS PROJECT WITH BONUS OF FREE TWO TRANSISTOR RADIO PROJECT. CSC UK LTD. Dept 7P, Shire Hill Industrial Estate, Saffron Walden, Essex CB11 3 AQ.			
It's easy. Give us your name and full postal address, in block capitals. Enclose cheque, postal order or Credit card number and expiry date. OR telephone 079921682 and give us y EXPERIMENTOR. CONTACT HOLES, C CAPACITY			
BREADBOARDS. CNTACTHOLES. 14 PIN.DIP. INCLUDINGPOSTAGE			
EXP. ${ }_{\text {E }} \mathbf{3 2 5}$	130 270	1	${ }_{¢}^{\text {¢ }} 8.5 .53$
EXP. 300	550	${ }^{\frac{1}{6}}$	¢ £ 7.29
EXP. 650	270	Use with 0.6	
EXP. 4b.	Four 40 Point Bus-Bars	Bus-Bar Strip	£ 4.29 ¢
TESTCLIPS - Busbars			
			${ }_{\text {f }}{ }_{\text {f }} \mathbf{7} 78$
PC. 16-18-18. ${ }^{\text {Pual Clip. }}$			
OTO-BOARDS.			
PB. 100.	${ }_{760}^{630}$	${ }_{10}^{6}$	$\underset{\text { ¢ }}{\text { ¢11.01 }}$

address
 WW - 034 FOR FURTHER DETAILS

COUNTERS, BUILT TOA STANDARD...

Universal Frequency Counters - Ceneral Specification

FREQUENCY STANDARD OPTION SPECIFICATION OS1 051 053

 \begin{tabular}{lcccc}
\hline Crystal Type \& 5 MHz Fundimental \& 5 MHz Third Overtone \& 5 MHz Fiffh -

\hline Oven Temperature \& $+75^{\circ} \mathrm{C}$ \& $+80^{\circ} \mathrm{C}$ \& $+80^{\circ} \mathrm{C}$

\hline

\hline Oven Temperature \& $+75^{\circ} \mathrm{C}$ \& $+80^{\circ} \mathrm{C}$ \& $+80^{\circ} \mathrm{C}$

\hline Ambiant Temperature Range \& $-15^{\circ} \mathrm{C}+0+45^{\circ} \mathrm{C}$ \& $-15^{\circ} \mathrm{C}+0+45^{\circ} \mathrm{C}$ \& $-20^{\circ} \mathrm{C}+0+50^{\circ} \mathrm{C}$

\hline

\hline Autput \& 1MHzTTLLevel \& 1 MHzTLL Level \& 1 MHz \& 5 MHz

\hline
\end{tabular}

...NOT TO A PRICE

Available from stock.
Mi \square MTG (INSTRUMENTS) LTD. (Inc. HOYMITZ AVIONICSLTD)
© ASSOCIATEDWHTH THE HOYMITZ EROUP OF COMPANISS

[^0]

ELECTRO-TECH COMPONENTS LTD. 364 EDGWARE ROAD, LONDON, W.2. TEL: 01-723 5667

CALLERS WELCOME

Take away'scopes
 Light 'n' Portable

A dual trace battery/mains portable oscilloscope with a performance far bigger than its diminutive outline and low cost suggests. In a case measuring only $4 \times 9 \times 11$ inches, the D32 packs a full size spec -two identical onsivities up to 10 mV a 19 range time base with $\times 5$ magnifier, variable, automatic and TV triggering, internal rechargeable batteries - all in a unit weighing no more than 10 lbs . With its emphasis on simplicity of controls, rugged construction, and a relatively large screen, the D32 is equally at home at the top of a ladder, on a catwalk, in a processing plant, in the cockpit of a light aircraft or in service at a remote outdoor location. And it's only $£ 476.00$ with various
options available. ptions available.
ontact your sales engineer, phone or simply circle the enquiry number.

TELEQUIPMENT < 丽>

completes the circuit

See Lektrokit at one of the Lektrokit
dealers near you. There's bound to be on they're springing up everywhere. Send fo the name of your nearest-plus FREE ful olour catalogue- to
Lektrokit Ltd., Sutton Industrial Park, Earley, Reading, Berks RG6 IAZ
Telephone 0734669116

Tektronix UKK Ltd., PO Box.69, Coldharbour Lane,
tarpenden, Herts. AL 54 UP
Harpenden, Herts. AL-5
Tel: Harpenden 63141
Regional office telephone numbers:
Regional office telephone numbers:
Dublin 500979 Livingston 32766

ELECTRONICS SUPPLIERS, SHOPS, IMPORTERS, MANUFACTURERS: HONG KONG IS CHEAPER

Owing to the rising value of the Japanese Yen, products from Japan are becoming very expensive
We have equivalent quality products at far better prices from Hong Kong, Taiwan and Korea.
We can supply in both large and small quantities with proven quality. Even if you have never imported goods before, we can show you how!

Catalogue $\$$ US4.00 to cover. airmail postage.

DICK SMITH

ELECTRONICS (HK) LTD.
Retail Showroom \& Buying Office 29-39 Ashley Rd, Kowloon, H.K. Tel. 3-669 352

Tlx. 64398
Call in when you're next
in Hong Kong?

CHe $=\begin{aligned} & \text { UK } \\ & \text { LTD. }\end{aligned}$

 Ranges $=1 \mathrm{HZ}-60 \mathrm{MHZ}=60-600 \mathrm{MHZ}$
Gate $=$ XTAL 5.24288 MHZ 1.0 or -1 sec . by pushbutton
selection. catecte
selion.
Imput $\operatorname{Imp}=50 \Omega$ at $60-600 \mathrm{MHZ} 1 \mathrm{M} \Omega$ par with 15 PF a
60 MHZ .
Typical Sonsitivity $=10 \mathrm{mV}=50 \mathrm{MHZ} .20 \mathrm{mV}=200 \mathrm{MHZ}$
$150 \mathrm{mV}=500 \mathrm{MHZ}$
Resolution $=1 \mathrm{~Hz}=0.60 \mathrm{MHZ} .10 \mathrm{HZ}=60.600 \mathrm{MHZ}$.
Typical Stability $=3$ parts 19 per ${ }^{\circ} \mathrm{C}$ after 1 min . warm-up
Power $=100-240$ V A.C. $40-60 \mathrm{HZ}=9-16 \mathrm{~V}$ D.C.
Size $=$ H. $68 \mathrm{~mm} W=263 \mathrm{~mm} D=216 \mathrm{~mm}$. (Provision for int batt pack). Anodized aluminium cabinet.
Price $£ 145.00$ + VAT
7 HUGHENDEN ROAD, HASTINGS, SUSSEX, TN34 3TG ENGLAND. Telephone: (0424) 428131
ww - 009 FOR FURTHER DETAILS

METER PROBLEMS?

137 Standard Ranges in a variety of sizes and stylings available for 10-14 days delivery. Other Ranges and
special scales can be inade to order.

Full Information from:
HARRIS ELECTRONICS (London) 138 GRAYS INN ROAD, W.C. 1 Phone: 01/837/7937 ww - 083 FOR FURTHER DETAILS

Put Fluke to the Test

A Digital Multimeter on 14 days approval

If you've ever wanted to challenge the claim of a leading instrument
manufacturer then here is your chance. manufacturer then here is your chance.
Fluke are so confident that you will appreciate the fine qualities of their paces.
Simply select either the handheld or bench models at the special low price, complete and clip the coupon. We then pay the VAT,

postage \& packing and despatch the instrument on 14 days

 during the 14 day period you're niot completely satisfied with A perrormance, returnit to us and your money will be refunded. Are you going to put us to the test?

TWO LOW COST METHODS OF MONITORING YOUR DATA CIRCUITS

Model 501: Dataser Monitor. Checks asynchronous modem Model 501: Dataser Monitor. Checks asynchronous modem
circuits or DCE-3 telex auto-dial circuits. Code and speed
transparent. Displays number being dialled on telex circuits transparent. Disslays number being dialled on telex circuits
Connection for VDU or printer for both-way data monitoring. Connection for VDU or printer for both-way data monitoring. Modol 504: Databug. Video display based monitor for
asynhchronous or synchronous data a speeds up to 9600 bps.
ath
 8-evel ASCII and 5 -level Baudot codes as
UHF outputs for video monitor or TV set.
Also available: Data selectors, Data regenerators, V24 Data
Cables, V24-80/80V converters, , Rack mount Chronometers. Eloctro-Systems \& TTiming Company
Penhill Road, Lancing, W. Susex
Telophone Lancing $(090-63) 4608$
WW - Las FOR FURTHER DETALLS

Modè 8100
assembled

The Winners

These two products are our

sabtronics

 assembled: $f 69.95$
(plus p.p. $£ 3.00$ and VAT at 8%,
 best sellers!

The two products shown above from Sabtronics The two products shown above from Sabtronics compare with similar equipment selling for atle
$£ 150.00$. Is there more to these products than $\varepsilon 150.00$. Is there more to these
value? Let's take a closer look.
The Frequency Counter Model 8100 It employs LSI Technology, has the performance and characteristics you demand, guaranteed fraquency range of 22 Hz to 100 MHz; selectable
hivlo impedance superior sensitivity; selectable resolution and selectable attenuation. Plus an accurate time base withe excellent stataibity. An 8 digit
LED Display features floating decimal point leading LED Display features floating decimal point, lea Brief specifications: Brief Specifications:
Frequency Range: 20 Hz to 100 MHz guaranteed,
_10 Frequency Range: 20 Hz to 100 MHz guaranteed,
(10 Hz to 130 MHz typical) -Sensitivity: 10 mV RMS,

20 Hz to $50 \mathrm{MHz}(5 \mathrm{mV}$ typical); 15 mV RMS, 50 MHz
 $1 \mathrm{M} \Omega / 25$ pp or 50Ω-Attenuation: $\mathrm{X} 1, \times 10$ or $\times 100$
Accuracy: $\pm 1 \mathrm{~Hz}$ plus time base accuracicy - Aging Accuracy: $\pm 1 \mathrm{~Hz}$ plus time base accuracy-Aging
Rate: $\pm 5 \mathrm{ppm} / \mathrm{yr}$ - Temperature Stability $\pm 10 \mathrm{ppm}$,
 - Display: 8 -digit LED, floating DP, overflo
indicator -Overload Protection - Power indicator - Overload Pro
Requirement: $9-15$ VDC
Optional prescaler will be available from around
The DMM Model 2000
The model 2000 is all solid-state, incorporating a single LSI circuit and high quality components. st has five functions and a total of 28 ranges. Input
overload protection, auto polarity and auto zerion overload protection, auto polarity and auto Ze
are provided on all ranges and a basic DCV are provided on all ranges
accuracy of $0.1 \% \pm 1$ digit.

Brief specifications:
DC volts in 5 ranges: 100μ to $1 \mathrm{kV}-\mathrm{AC}$ volts in
5 ranges: $100 \mu \mathrm{~V}$ to $1 \mathrm{kV}-\mathrm{DC}$ current in 6 ranges: 5 ranges: $100 \mu \mathrm{~V}$ to $1 \mathrm{kV}-\mathrm{DC}$ current in 6 ranges:
100 A to o
AResistance: 0.1Ω to to $20 \mathrm{M} \Omega$ in 6 ranges -
$A C$ frequency response: 40 Hz to 50 kHz
 $0.36^{\prime \prime}(9,1 \mathrm{~mm}) 7$-segment LED - Input inpedance
$10 \mathrm{M} \Omega-$ Size: $8^{\prime \prime} W \times 6.5^{\prime \prime} \times 3^{\prime \prime}-1(203 \times 165 \times 76 \mathrm{~mm})$

Order yours now! Write to:
Timwood Ltd.
Prospect Road, Cowes, Prospect Road, Cowes,
Iste of WWight, England Teex 88982 .
Send payment with your order.

Whatever it is, the
 of power amplifiers will handle it The $\mathbf{H} \|$ ||
'S' range is designed to handle heavy industrial usage in the fields of vibrator driving, variable frequency power supplies and servo motor systems.

S 500D

Dual Channel
$19^{\prime \prime \prime}$ rack mount $31 / 2^{\prime \prime}$ high
500 w r.m.s. into 2.5 ohms per channel
900 w r.m.s. in bridge mode
DC-20 KHZ at full power
0.005% harmonic distortion ftypical) at 300w r.m.s. into 4 ohms at 1 KHZ 3KW dissipation from in-built force cooled dissipators

S 250D

Single Channel
19"1 rack mount $31 / 2^{\prime \prime}$ high
500 w r.m.s. into 2.5 ohms Retro-convertible to dual channel DC-20 KHZ at full power Full short and open circuit protection Drives totally reactive loads with no adverse effects

A complete range of matching transformers and peripheral equipment for closed loop, constant current and voltage use are available.
Alternative input and output termination to order. Rack case for bench use built to specifications. For complete data write or call.

Kirkham Electronics
MILL HALL, MILL LANE, PULHAM MARKET, DISS, NORFOLK IP21 4XL DIVISION OF K.R.S. LIMITED,
FRANCHISED COMMERCIAL AND INDUSTRIAL AGENTS FOR WUSF FOR FUKIHER DETALS

ww - 064 FOR FURTHER DETAILS

 FERROGRAPH

Yours impeccably

MCP Electronics Limited
Station Wharf Alperton Wembley Middx.
Telephone: 01-902 5941
theindispensable 37723

THRULINE WATTMETER
$0.45-2300 \mathrm{MHz} / 0.1-10,000$ watts
The Standard of the Industry What more need we say

Exclusive UK representativ

aspen

 TELEPHONE: $01-8681188$ - TELEX. 8812727
KONTAKT 60

europe's leading contact cleanimg spray

kontakt so

Quality Industrial Sprays from Kontakt Chemie

K70 Protective Plastic Spray K72 Insulating Spray K75 Cold Spray K80 Siliconised Polish K90 Video Spray K100 Antistatic Spray K101 Dehydrating Spray and Pos. 20 POSITIVE PHOTO RESIST

SPECIAL PRODUCTS DISTRIBUTORS
81 Piccadilly, London W1V OHL
Tel: 01-629 9556 Cables. Speciprod, London W1 Cabses: Speciprod, Londive leaflets of the above products are freely available on
request.

> More second user bareans from cariton
> Top Quality Test Equipment at the keenest prices

Acoustic BRUEL \& KJAER 2203 Precision sound level meter 1613 Octave filter set covel meter ${ }^{10} \mathrm{CEL} 203$ \& 2204	
(12LER meer-dig	
O30A WheasSULLIVAN	
TTO98 Decaderesis	
Cable Test EquipmMARCON1	
TF2091A/TF2092A White noise	
generator/receiver 300 channel $\stackrel{\text { sysiem }}{\text { STC }}$	
Counter Timers HEWLETT PACKARD ${ }_{52533} 52$ Converier plag-in to 512 MHz 5263 A ime interva plug-in	
MARCON!	
${ }_{\text {RACAL }}$	
902410 Hz - $600 \mathrm{MHz} 7+1$ digits 9059 DC. 560 M Mz with baterer pack 	
aremFunctionFunereratorsHEWLETT PACKARD	
HEWLETT PACKARD square triangular 3301 Auxiliary	
M	
HeWLETT PACKARD	
channel display SPECTRUM DYNAMICS 550 Unievessal programmer/verifie	
Mains Monitors AMPROBE LAV'sX Mains voltage reco	
LAv3x Mainsvolage res	
Lex	
(ent	
	$288+$ CT Clamp-on AC record
Microwave HEWLETT PACKARD 423A Crystal detector	
Modulation Meters	
RADIOMETERS ${ }_{\text {AFM1 AMIFM modutaior meter }}$	
AFM1 AM/FM modulation meter Oscilloscopes	
ADVANCE os 1000 DC. 15 MHz dual trace	

Aust Available
402 Random Noise Generato
216 Artificial Mo Circuit Magnification 1245/46/47'O' Meter with Signal
MARCO MARCOLGenerators
TF99CON1 TF995 B/50.2-220MHz AM/FN
Narrow Deviation Vibration
DAWE

T.V. Test Equipmen
MARCONI MARCONI
TFempong Garale enerentor ,
Temperature \& Humidity

 O-100 C C C
LEEDICENS
HP5 Hummidiy probe
 RAYTEK oltmeters-Analogue SOONTON

 N-Function Dual channel
U-FukRMS meter peakk RMS meeter
PHLIIPS PM2454 A A voltmetero 12 MHz
Voltmeters - Digital

ADVANCE | DMN31999 FSD AC/DC/8/Cul |
| :--- |
| DANA |

\qquad
 B300A OP11119999AC/OC
HEWLETT PACKRD
3474/L 29999 FSD AC/ /DC/

 HEWLETT PACKARD
302A A 20 H -50 KHz 75 cob range

Redundant
Test Equipment
Why not turn your under-utilized
est equipment into cash ? Ring us and we'll make you an offe
R ${ }^{1461 \mathrm{CV}}$ (M) Pors 5575

W-080 For further details

 350 295
 330

[^1]VORTEXION

The best connection for the tube you want.

Whatever industrial tubes you need, you can be sure you'll find them in this extensive collection of information-packed literature. There's everything from camera tubes to display tubes. Lasers to photomultipliers. Transmitting valves to receiving tubes. I.R. emitters to CCD Image Sensors. Having this wealth of reference material on hand can save time, trouble and money. Apart from setting out data in the most clear and convenient way, you'll find that our booklets group products into types and outline major parameters.
haracteristics selection, replacement, equivalents your choice.

Just contact us for the best connection in tube you'll ever make.

Crellon Electronics Ltd.,
380 Bath Road, Slough, Berks. Tel: Burnham (06286) 4434. Telex: 847571.

REת

PlesseyTelegdata

Perfect testgear forcircuitperfection

The Plessey Telegdata range of testgear for telegraph, telex and data systems helps you achieve consistent performance and maximise traffic.

Already in use in more than 35 countries, Telegdata equipment has an enviable reputation with posts and telegraph authorities and with military and commercial operators of communications networks. Telegdata instruments are being continuously developed to cater for the latest communications technology and represent a comprehensive and versatile range of servicing aids.

Automatic Telex Test Set, ATTS10
Normally located in a telegraph exchange, the ATTS10
provides automatic facilities for testing receive margin provides automatic facilities for testing receive, margin
and transmitted distortion on remote teleprinters, using and transmitted distortion on remote teleprinters, using
5 unit code. up to 30 o bauds. All measurements are printed
out on machine under test.

Telegraph Signal Generator,TSG40 A precise signal generator covering CCIT recom-
mendations for testing 5 and 8 unit codes, with or with mendations for testing 5 and 8 unit codes, with or without bauds. Internal signalling supply and TTL Llogic outputs.

Telegraph Distortion Measuring Set, TDMS80 The perrect monitor for 5 and 8 unit code telegraphic transmission problems. An easy to use instrument, covering
the speed range $25-330$ bauds. All measurements shown on targe CRT raster display. A useful companion to the
TSG40. cishe

Data and Telegraph Test Set, DTTS10 Compact and versatile, the DTSG10 (Generator) and and data testing facilities for Simplex and duylex.epoperation
of $5,6,7$ and 8 unit codes. Speed range is $40-12,000$ bits/ of $5,6,7$ and 8 unit codes. Speed range is $40-12,000$ bits
sec. LED numeric displays show peak distortion,speed sec. LED numeric displays show peak distortion, spee
character, bit and block errors together with modem
interface.

PLESSEY
CONTROLS
Plessey Controls Limited, Sopers Lane
Poole, Dorset, UK, BH17 7 ER
Telenone:Poole (02013 13) 5161
Telex: 41272

Everyone who works with electricity needs to know at some time or other what's going on inside the cable he's handling. What voltage. What current. What resistance. Not knowing the answers, or worse still having inaccurate answers, can make life difficult, even terminal Eagle Test Equipment gives the right answers
The range covers general multimeters, high voltage probes, clamp meters, insulation testers.
Here are just four. Send the coupon for details of all the rest.

KEW 7 Multimeter KEW 7 Multimeter
1000 OPVV DC volts up to 1000,
 volts up to 1000. Resistance up
to 150 Kohms. Pockt size
"Off" damping. Complete with "OIf"' damping. Complete with
leads \& batter. R.R.P. $£ 6.95$ leads 8 it
ex. VAT.

EM 1200 Multimeter movement. Overload protection. Reversible DC
polarity $A C$ amps: 15 ; $A C$ polts to 1500 amps amps up to
15, DC volts to 1500 . $15, \mathrm{DC}$ volts to 1500.
Resistance up to 200

TestEquipment: EAGLE

Please send me details of your complete range of Test Equipment.
Name Company
Address

400 EDGWARE ROAD, LONDON, W2 - TEL. 01-402 0186. TELEX 298765
r 1

$$
4 .
$$

 EM10, 20 \& 30 Multimeters
$10,20 \& 30,000$ OPP. All lith antiparallax
 EM 30). DC amp to $250 \mathrm{~mA}(600$ for
EM $30 . \mathrm{AC}$ volts to 1000 (1200 for EM 30 .
Resistance up to 6,5 and 60 meghms
 respectively. R.R.R.P.
EM20 17.25 EM $30 £ 20.75$ ex. VAT.

THENEWPIISHOWROOW

Pil are pleased to announce the official opening of their new 1500 sq. ft. showroom to the public Offering a range of some 350 electrical measuring instruments manufactured by around 60 manufacturers, both British and international. Pil can cater for practically every electrical measurement problem for any user on an ex-stock/short delivery basis. The showroom facilities and its technical back-up are | Factory/Repairs $01-6390155$ |
| :--- |

AN IEC GROUP COMPANY
houses and overseas users, buyers engineers, to do-it-yourself enthusiasts and bists.
Instruments Electrical the service and calibration division can provide full guarantee facilities as well as offering their normal repair and calibration service For an immediate solution to your instrument problems, contact the Instrument Group at Instrument House.
Showroom/Sales/Export 01-639 4461
Open Mon. to Fri. (ring for Sat. opening times)

IUSTRUMENT HOUSE,727 OLD KENT ROAD, LOHDON SE15 TELEPHONE:O1-6394461 TELIX:88811854(INSTEL)

Toroiot powe supples		
Hearsins		
	E1. 2.50	
	E29.16	brioge priven,
THERMAL CUT.OUT, 70 C	51.38	(ex

CRIMSON ELEKTRIK

WW - O225 FOR FURTHER DETAILS

J E S AUDIO INSTRUMENTATION

HAZELTINE 1200 VDU TERMINALS

AVAILABLE BRAND NEW
£350
Only from
DISPLAY ELECTRONICS
COMPUTER APPRECIATION
See Page 111 for full details

Switchcraft QG Connectors are money savers Because we have introduced an attractive new quantity REAR MOUNTED RECEPTACLES discount structure. Switchcraft are still the same high screws and shell ground terminals.
Two new additions to the range are -
FAS-DISCONNECT
A new non-Iocking feature allowing
immediate disconnection that
requires only a $4 \mathrm{bb}(1.8 \mathrm{~kg})$ force.
Great for that fast equipment take-down hands never had it so good! REAR MOUNTED RECEPTACLES permit a complete sub assembly to be soldered, cleaned and tested prior to 6 at chassis mounting. Available with PC or solder terminals with lock or Fas-
isconnect latching, the Y series offers real savin roduction costs Extra colour trim escateal savings in unctional panel trimming and colpur cooding. Switchcraft QG Connectors are just right for audio mixers, consoles, PA systems and in computer applications.
The professionals choose Switchcraft $Q G$ and save the pennies

FW.O. Bauch Limited
49 Theobald Street, Boreham Wood. Hertfordshire WD6 4RZ
Telephone 01-953 0091, Telex 27502

The world overYou get the best service from Haltron

For high quality electronic valves, semiconductors and integrated circuits - and the speediest service -
specify Haltion. It's the first choice of speciif Halitron . it st the first choice of
Governments and many other users throughout the world. Haltron product quality and reliab bility are clearly confirmed. The product range is very, very wide. And Hatron export
expertise will surely meet your requirements. Wherever you are, get the best service. From Haltron.

PA GROUP \& DISCO UNITS

Audix HD12.9D25
Audax HD 13034 H

 lies $4001 \cdots$
Closstion 3 H 1300

 ecca London Horn
Deca Col 100 / 18
${ }^{\text {£6.0 }}$

 Jorran Watts Moo
Jorran Watrs HF K
Jordan 50 m Jordan 50 mm unit
Joordan CB crossover
Ker
 Kef 8110
Kef
Kef
Kef
Kef 139
Kef
KN1
Kef
Re Kef B39
Kef DN3
Kef DN2
Kef ON22
Kowther

Prices per pain-carriage
 Telex: 896141

Send 15p stamp for free 38 page

- SWIFT

OF WILMSLOW
The firm for Hi-F
5Swan Street,
Wilmslow, $/$ Cheshire

Telephone: Sp
0625529599
, Mail Order and Export
(Swift of Wilmslow) 0625526213.
Lightning service on telephoned credit card orders!

an affordable, audible improvement
One of the critically acclaimed advances introduced in Shure's incomparable V15 Type IV pickup is its revolutionary and unique distortion-reducing Hyperelliptical stylus. Now, you can enjoy this standard of sound purity in a new, essentially flat frequency response, light tracking, high trackability cartridge that will not tax your budget: the new Shure Model M95HE.
the Hyperelliptical stylus tip

The Hyperelliptical nude diamond tip
configuration represents a significant advance in tip design for stereo sound reproduction. As the figures show, its "footprint" (represented by black
oval) is longer and narrower than the traditional Biradial (Elliptical) tip-groove contact area. Because the Hyperelliptical foontact area. Because the Hyperelliptical footprint geometry is
narrower than both the Biradial and long-contact shapes such as the Hyperbolic, it is pre-eminent for reproduction of the stereo-cut groove.

a measurable drop in distortion
As a result of the optimized contact area of the Hyperelliptical tip, both harmonic distortion (white bars in graph above) and dramatically reduced
upgrade your present M95 If you already have a Shure M95 Series Cartridge, you can improve its freedom from distortion right up to the standards of the new M95HE cartridge simply by equipping it with a Model N95HE stylus. The cost is extraordinarily lo -yet the difference in sound will be immediately apparent. Takes only seconds to install-requires no tools whatsoever.

M95HE cartridge \& N95HE stylus

[^2]
wireless
 world

Suppressing the converted

Editor:
Deputy Editor: PHILIP DARRINGTON Phone 01-261 8435
Technical Editor: GEOFFREY SHORTER, B.SC Phone 01-2618443
Projects Editor: Mrojects EaGit
Phone: $01-2618429$

Communications Editor: RAY ASHMORE, B.Sc., G8KY Phone 01-261 8043

Drawing Office Manage
بol
Production \& Design
ALAN KERR
Advertisement Contro
Advertisement Manager
BOB NIBBS
hone 01-261 8622
DAVID DISLEY
Classified Manager:
Classified Manage
BRIAN DURRANT
Phone 01-261 8508 or 01-261 8423
BANRY LEARY /Class
Phone $01-2618508$
JOHN GIBBON (Make-up and copy)
Publishing Director:
GORDON HENDERSO
technical journalist, charged under the provisions of the Wireless Telegraphy Act of 1949 , was convicted of manufacturing and operating a home built walkie-talkie without a licence.
He was fined $£ 300$ with $£ 45$ costs but, rather than prompting a strong negative response, this heavy fine served to spur him into doing the right hing. He studied for the Radio Amateurs' Examination, passed wich
credit and applied to the Home Office for the licence to which he was now entitled, first having signed the statutory undertaking to comply
totally with the provisions of the licence.
The result was a curt refusal from the Home Office to issue a licence. They said they felt that the necessary complied with, and suggested that application be made again in 12 months' time.
Reading the Act and the licence shows that, although there is provision for the Secretary of State to close
a station which is being operated improperly, refusal to issue a licence in the first instance is purely
discretionary (Section 4, sub-section 3 of the Act). The Home Office's negative eaction therefore amounts to the mposition of a penalty before a
icence-related offence has been committed, and it must surely be mplicit in the advice to "apply again in 12 months" that offenders are not It would seem, in fact, that to refuse a licence under such conditions represents an arbitrary administratio of additional punishment, standing outside the main body of punitive
principles followed by the judiciary principles ollowed by the sould take exactly a year to see the error of their ways is difficult to understand.
Such action strikes at the very spirit Such action strikes at the very spirit
of constructive regulation, inevitably the applicant. It could well make the
radio enthusiast doubt the value of conforming to regulations which can depend on a mere opinion about the
way a licensed operator is likely to way a licensed operator is likely
behave. It could even stimulate aggressive acts of illegal transmitter operation.
In the current state of conflict between the Home Office and the former's case is not helped by such a heavy-handed demonstration of retribution. Where an individual has discharged his legal debt after an offence, and has satisfied all the technical conditions, it surely must be
right - and make sense psychologically - to demonstrate good faith by issuing a licence forthwith. In any case the operation of licensed equipment is tha much easier to check. On the other infringed after a licence had been granted the Home Office's actions would have been perfectly acceptable. There is certainly more than a hint of the perverse in the Home Office's told that he would be barred from holding a licence for a full year after conviction, he presumably would not have bothered to apply until the end of that period. At the very least, this the time of legal proceedings. According to information we have ceived, a generally similar case resulted in an amateur's licence been convicted of an offence against the Wireless Telegraphy Act, uggesting that it is not simply the offence which dictates a refusal. When questioned by an RSGB representative was their policy that once the punishment had been meted out and served the offender was regarded as aving a clean record. Judging from this total divergence in approach hit-and-miss basis or an official double standard is being applied.

What is an electron?

A new model: the phase-locked cavity
by R. C. Jennison, B.Sc., Ph.D., F.I.E.E., F.R.A.S., F. Inst.P., F.R.S.A
Electronics Laboratories, University of Kent at Canterbury

What is an electron beyond being just a unit of charge? Why do we have to push an electron, or a car, with a specific forc
to make it move? Why does it carry on moving after we stop pushing? Why, in the limit, is the push quantised? Three-quarters of the way through the wentieth century there was no
satisfactory answer to these questions
but recent research in the Electronics Laboratories of the University of Kent at Canterbury may have provided the

THE electrical or electronic engine can often get by without considering a the properties of the electron an frequently regards it simply as a unit o electrical charge. Occasionally he may or physical electronics where he has to recognise that the electron has a mass, a magnetic moment and quantised anguar momentum and he will accept that irac statistics. Electrons have Fecom so useful that their properties in all sort of circumstances are very well known and rules for their behaviour are fully documented. By the very nature of they were propounded to explain the idiosyncrasies of the electron, and ometimes matter in general, in order to provide working rules to account for its tances. Thus the quanner of circum gradually incorporated further rules to ccount for more sophisticated obserations and these rules have become an accepted part of physics. They work why bother to question why natur obeys these rules if the rules enable us o achieve all the technological wonders of the age?
The same applies to Newton's laws hey are usually accepted as basic law down by Newton to account for the bservation of the behaviour of matter There has to be a reason for Newton' laws, just as there has to be a reason for he quantum theory, the charge on th Really what we have is a wonderfu computer programme that has evolved over the ages and to which we may refer problems. The curious thing is that we
don't, or at least didn't, know why th programme work
why it works? Let me give you an ana ogy. In these days of integrated circuit it is very easy to build quite complicated electronic systems by plugging inte manner and relying on the fact thional manufacturers have done a good job in specifying the overall parameters and transfer function of each unit. It is not necessary to know precisely what goes on inside each integrated circuit pro-
vided that we stick to the rules, or is it? There are vast possibilities open to the current range of integrated circuits microprocessors and the like, but who would suggest that we stop all further
research into physical electronics and simply accept the present state of the art for all future applications? It is only by digging down into the fundamentals that we are likely to achieve a really major break-through in the future
Until very recently, in order to plain the electron, its inertia, its detailed quantised behaviour, its charge and its other properties as a particulate entity, at least half a dozen separate postulates are embodied in the separate rules comprising the quantum theory, and quantum mechanics has six postulates (Van der Waerden, 1973). Other postucharge are even morning inertia and charge are even more mysterious for traditional place in our teaching that their existence is automatically accepted without question. Einstein Mach's postulate for the to accept Ernst (that its origin was in the influence of the distance masses in the Universe) but he had considerable reservations about the quantum postulates. Werner discussion with Einstein about this prob lem in 1954, a few months before his death. It was a very nice afternoon that I spent with Einstein but still when it came to the interpretation of quantum he could not convince me. He always said: 'Well, I agree that any experiment the results of which can be calculated by means of quantum mechanics will scheme cannot be a final description of

Nature'." It is clear that Einstein had a beautiful simplicity of Nature stein the quantum theory was simply a succession of ad hoc solutions with the greater truth hidden somewhere underneath. It is surprising how this echoes the earlier difference of conception on the nature of photons where Planck and
Bohr held on to simple classical concepts and Einstein, on that occasion, was the radical, postulating a complication in an otherwise simple conception of light.
Heisenberg's views on electrons, photons and other particles were very complicated and caused considerable dissension in his audience. Dirac, who was present when Heisenberg read a paper, was not entirely happy: "I
wonder whether the electron should not be considered as an elementary particle. It may be that I am prejudiced because I have had some success with the electron and no success with other particles. on that." Heisenberg's reply well illustrates the attitude of a whole school of thinkers who are devoted to the extreme quantum picture of corpuscular particles, to the possible exclusion of same breath, they state may well exist: "I cannot see that one could consider the electron as an elementary particle in the old sense, because an electron can produce light quanta. Light quanta can produce baryons. So actually the elec-
tron is connected with this world of baryons and hadrons and so on. So I don't see that you can separate it out. As soon as an electron has these interactions, then, of course, it is surrounded
by a cloud consisting of all these other by a cloud consisting of all these other
things". The rigidity of Heisenberg's thinking is illustrated beautifully by his use of the phrase "of course" in the last sentence. It is probably worth noting discussion which followed
It is generally acknowledged that the quantum theory cannot solve the mystery of the electron for it starts too far up the scale and uses as its postulates embodied in the electron. The quantum description of an electron therefore properly agrees with these properties but it tells us nothing of the substance
together. A good account may be found (1964).

Most of the attempts to molel the electron have relied basically on classi cal concepts, a distribution of electric charge held together by unknown forces named Poincaré stresses after their propounder. Problems arise with in the field of the particle as a whole they are acted upon by a Lorentz force and it has not been possible to establish a model which satisfies the observed features of the particle. In particular the differs slightly from the rest mass derived from relativity theory.
The discovery that electrons have an intrinsic spin presented further difficulties with this model, for the angur exactly half that which would be given by classical physics. Furthermore, the ratio of magnetic moment to angular momentum for an electron about its own axis turned out to be twice that orbit about a nucleus. .
lectron assumes that electric charge is undamental, for it in no way accounts harge can be spread throughout the electron. This implies that the unit of charge can be broken up into many separate bits of unknown substance The electric field, in line with traditiona from the charge and is therefore hought of as a secondary phenomenon. This leads to a further difficulty with his model, for measurements show tha he electron appears as a point charg for the field at at the centre. Attempts to avoid this difficulty never seem to agre with the observed facts; for example the 'classical radius' of the electron may be calculated for the model and turns
out to be $2.8 \times 10^{-13} \mathrm{~cm}$. When measurements are made on the electron it does not seem to have any particula radius, certainly not $2.8 \times 10^{-13} \mathrm{~cm}$, and the effective radius given by the quan um theory is 137 times large
to avoid the problems of the plum pudding electron by postulating whir of electromagnetic waves which migh
rise from non-linear sithen well's equations. On the whole these
theories have been looked upon as curiosities for they by no means accounted for the properties of an electron, but they did remove one variable attributing the charge

Radiation and electrons

hat is the connection between radia ion and electrons? Clearly we can only interaction with electrons or proton and we have to be very careful not to confuse the properties of the radiation with those of the electron and vice
versa. Nevertheless there are two remarkable phenomena which show that at certain precise frequencies the connections between electromagnetic waves (or photons) and electrons is absolute - they completely transform into each other. Before we considey
these phenomena let us look at the way it is possible to conceive of radio wave as photons.
According to the photon concep radio waves consist of a very larg

Radio waves or photons? - historical background

In his famous treatise on optics Newton
stated that light consisted of corpuscles and stated that light consisted of corpuscles and
his authority was such that his opinion dominated scientific reason until, nearly a hundred years later (1801), Thomas Young
showed that the interference of light was a showed that the int.
wave phenomenon.
In the mid nineteenth century James Clerk
Maxwell showed theoretically that there Maxwell showed theoretically that there
should be electromagnetic waves, that light fitted this description and that there ought to be a spectrum of such waves from the lowest electrical frequencies to far above the
frequency of visible light. Some years later frequency of visible light. Some years later
Herrtz demonstrated the existence of radio waves and the wireless transmission of telegraphic messages became a reality. Then
the bombshell came: the discovery of the photo-electric effect. No one could explain how electromagnetic waves could eject elec-
trons from metal surfaces, for the onset of trons from metal surfaces, for the onset of
emission depended upon the frequency of the emission depended upon the frequency of the
waves. Below a certain critical frequency no electrons were ejected, irrespective of the amplitude or intensity of the waves. In 190
Einstein accounted for this by proposing that ensergy and frequency were related by the now famous formula $E=h \nu$. The interpreta-
tion that he put on this formula was that light tion that he put on this formula was that light
consisted of discrete bundles of energy (later called photons). The energy given by this electron in the surface before it could be electron in the surface before it could be
ejected. The reason why Einstein and many ojected. .he reason why Einstein and many
of his contemporaries assumed that the
interpetation of $E=h v$ was that the ligt interpretation of $E=h \nu$ was that the light
only was quantised was because they considered the electron simply as a point or a ball sidered the electron simply as a point or a ball
of charge, and, as such, it appeared that it
could have none of the properties of a simple could have none of the properties of a simple
system. A macroscopic analogy could take system. A macroscopic analogy could take
the form of a large scale opto-electrical transducer in the form of a black box, an
optical signal generator in the form of an
other black box and ther black box and an oscilloscope to
observe the output of the transducer (se igure). If then we observed that the optical generator was applied to the tran optical generator was applied to the trans he generator was emitting pulsed light. This was Einstein's interpretation. But are there
other possibilities? It is an elementary exercise in electronics to make a transducer with delayed feedback which will give a pulsed
response from a continuous wave input, so response from a continuous wave is clearly another solution. One fuither possibilitity
remains, that both the light and the transremains, that both the light and the trans
ducer response are pulse-like, so that, going ducer response are pulse-1ike, so that, going
back to the interpretation of $E=h v$ there are three possibilities; (i) all light is quantised
(photons). (ii) all light is electromagnetic (photons). (ii) all light is electromagnetic
waves and the response of the electron is
quantised (iii) both the light and the electron quantised, (iii) b
are quantised.

It is interesting that Max Planck, the
founder of the quantum theory, and Niels Bohr, the founder of modern atomic physics,
would not accept the concept of Einstein's would not accept the concept of Einstein's
photons, especially if this implied that light was corpuscular, and they hoped for some other explanation of the effect. Planck him-
self had revolutionised physical concepts by postulating the quantum of action, h, to expluaning the laws of blackum oody action, h, bo
ex held on to the belief that the radiation he held on to the belief that the radiation itself was simple waves of the Maxwell-Hertz
type. Bohr's attitude is recorded by Leon Rosenfeld (1973): "As to the ephoton or liligh
quantum concept, istroduced by Einstein, quantum concept, introduced by Einstein,
Bohr regarded it as a useful but auxiliary Bohn regarded it as a he later called symconiceal, meaning thereby that it was not an aspect of the radiation phenomenon
could be directly observed as such." could be directly observed as such."
Despite his remarkable contribution to quantum theory Einstein was never happy with the quantum concept and in particular
with the surrender of deteministic physics with the surrender of deterministic physics
which seemed to defy the very basis of the classical principles upon which he built up he principles of relativity. Twenty years
ater Compton investigated the behaviour of ater Compton investigated the behaviour of
free electrons when radiated with elec-
tromagnetic waves of very high frequency romagnetic waves of very high frequency all like collision process between a photo and an electron, and the concept of photons as simple short wave-trains here seemed less
applicable than the corpuscular bullet-like applicable than the corpuscular bullet-lik
concept. Shortly afterwards Dirac welde ogether the quantum theory and relativity
in such a way that the behaviour of electrons in such a way that the behaviour of electrons
in general could be properly accounted for in general could be properly accounted for
and his theory also predicted a positively
charged twin to the electron, the positron, charged twin to the electron, the positron,
which was discovered a few years later in which was discovered a few years lat
cloud chamber tracks of cosmic rays.
tatisticall low energy photons whic Hertzian waves. Although no are nows what aves. Although no on ssumed by one school that a assumed by one school that a single puscle and by another school that it is a short burst of waves which nevertheles behaves as though it is purely monochromatic. The flearly exhibited in the listing of the is clearly exhibited in the listing of the
photon in tables of fundamental par icles, despite the fact that its propertie nder relativistic transformations ar quite different.
Photon energies at radio frequencies ore extremely small, so the energy of a aving a vast number of photons from vause there number of photons and, tatistical core a vast number, the $\begin{array}{ll}\text { photons } & \text { combination of all the } \\ \text { synthesises }\end{array}$ romagnetic waves propounded by Maxwell. Radio astronomers. can receive spectral line signals at v.h.f which originate in the very low energy transitions between, say, the 250th and conditions in interstellar space are so enuous and collisions are so rare that these remarkable transitions can actually take place). Is one receiving corpuscular photons or simple Hertzian
waves? The quantum theory telis us nothing for it avoids the issue by simply dentifying the frequency v with the nergy $E=h v$ between the respective rbits. The emission of a photon is ostulated but the mechanics of its on remain a mystery
If two oppositely charged spheres on he ends of a rod are spun about th centre point, then it is fairly easy to ow frequency radio waves in terms of oscillating electric and magnetic field oving outwards at the velocity o ight. It is also easy to picture the situa ero for we are just left with a static zero for we are just left with a static
dipolar electric field. If we endeavour to iterpret this situation in terms of corpuscular photons it is far less easy to omprehend and becomes anomalous hen we reduce the rotational speed to lectric field as a separate system in its wn right, endowed with the ordinary field properties of Maxwell's equations or one has to preserve an entirely photon virtual photons to explain the proper ef the system at zero frequency. It is probably apparent that the cor uscular photon concept is not very pful at radio frequencies although rains is not unreasonable. For example he analysis of an open-ended resonant cavity, even when the radiation is in finitesimally weak, does not pose a concept of electromagnetic waves, but try arguing it out when it is inhabited by one bullet-like photon! Similarly, feed-
back problems using corpuscular pho
ton concepts are a conceptual night mare. photons are bit of a red herring and that apart from the photo-electric effect and various atomic phenomena, classical electromagnetic waves consisting of simple fluctuating fields are far more
satisfactory Really the problem is more fundamental and concerns the interplay of radiation and matter. Which is the more fundamental - the photon or the electromagnetic field wave? the charge currently fashionable to consider that all electromagnetic waves are an assembly of photons and therefore to infer that it is impossible for a photon waves If one considers photons to be little balls of some form of light then, clearly, the statement is logical. If, on the other hand, the photons are simply limited trains of electromagnetic waves which can add together according to quite untrue - the photons are composed of electromagnetic waves and the electromagnetic fields and not the photons are the more fundamental. But then, if electromagnetic fields come
initially from moving charges, it would appear that the charges are really the most fundamental and the fields secondary or tertiary according to one's shall see later, we can question this argument on similar logical grounds. If we can form the unit of charge (the electron) from electromagnetic fields then we may reduce the number of the universe by requiring only the the universe by requiring only the
existence of time varying electric fields.
About thirty years ago I constructed the first intensity interferometer. With first time the shapes of the radio stars Cassiopeia A and Cygnus A. (In those Cassion Cassiopeia, Cygnus and Taurus!) The ferometer was due to R. Hanbury Brown but he gave me a very free hand in its realisation as he was much occupied with work on the original
Jodrell Bank 218ft telescope. It was quite unlike a conventional interferometer for it did not make use of the direct correlation of coherent signals but of the fluctuations of those signals. The correlation was performed after that all correlation was lost. However, random fluctuations from the various parts of the distant source beat together at. the output of two detectors spaced apart by many miles on the earth's
surface. The modulation is therefore cross-correlated and provides information about the source.
The intensity interferometer prohad the drawback of being rather in-
sensitive and incapable of determining
the phase of the source distribution. It
immediately raised the question "if it immediately raised the question "if it
works for radio waves will it work for works for radio waves will it work for up a new and entirely different interferometer technique which proved much better for further work in radio astronomy for it solved many of the problems of working on very long baselines (it is used over baselines of thousands of miles) so I reluctantly declined an invitation from Hanbury Brown to work on an optical version of the intensity for himself and with theoretical help from Richard Q . Twiss finally established that there was a correlation in the light from a laboratory source, and
later, from starlight. rom starlight
The success of these experiments theoretical physics at the time for, in the words of Hanbury Brown, "It appeared to show that one little photon knew what another little photon was doing!" Certainly if one looks at the situation
from the point of view of fluctuating electromagnetic fields, as in the radio case, there is no problem. The important lesson which we learned at the time was this: though we may consider that in the emission and detection processes light,
or a radio signal, behaves as photons, in the propagation process between source and observer it behaves as electromagnetic waves.
Are there any experiments where the wave concept fails completely? Apart rom the photo-electric effect th Effect. In 1924 Compton showed that when very high frequency electromag netic radiation (γ rays) fell on an elec tron, the electron immediately shot of as though it were hit by a bullet and radiation of somewhat lower frequenc than that of the incident radiation. Usually the electron shot off at an angle from the direction of the original radia-
tion and the re-emitted radiation shot off at another angle All attempts to explain this classically failed; it really looked as though light must consist of bullet-like photons and Compton was able to account for the phenomenon collision of a photon incident with en ergy $h v$ and reflected with energy $h v^{\prime}$ from a billiard ball type electron of res mass m_{0} which shot off with the kinetic energy given by the difference betwee photons must be particles and not just short wave trains? Last year I was able to show that it can be explained quite simply as an electromagnetic wave phenomenon provided that we identily
the electron with a simple phase-locked cavity of radiation.
Earlier on we referred to two remarkable phenomena by which elec
tromagnetic waves and electrons com-

WIRELESS WORLD, JUNE 1979 pletely transform into each other. These production. Annihilation occurs when a negative electron bumps into its opposite number, a positive electron (or positron). Both particles completely
disappear and from the point in space where they collided two photons of identical frequency but opposite polarisation move off at the speed of light. The frequency of these photons is such
that it corresponds to the exact conservation of energy in the transformation. The rest energy of the electron is $\mathrm{E}=m_{o} c^{2}$ where m_{o} is the rest mass of the electron and c is the velocity of light. The rest energy of the positron is sump into each other we therefore get two photons each with a frequency given quite simply by equating the energy
$E=h v$ with the energy $E=m c^{2}$ and $E=h \nu$ with the energy $E=m_{o} c^{2}$ and
therefore the frequency $v=m_{0} c^{2} / h$ therefore the frequency is $1.25 \times 10^{20} \mathrm{~Hz}$ and corresponds to a wavelength of $2.4 \times 10^{-10} \mathrm{~cm}$. The fascinating feature of annihilation is that it represents a perfect transformation from particles of matter (electrons) to electromagnetic waves (photons); for this transformation, it is complete and perfect.
Pair production is the opposite process, the formation of an electron and ion. Curiously the pomagnetic radia he reciousty, the process is not quite photons do not combine to form the two particles, they are formed from a single photon of twice the annihilatio frequency when the photon bumps int a catalyst, such as a heavy nucleus, which simply absorbs the exces quite extraordinary. Imagine a super radio transmitter that will tune over the whole range of the electromagnetic spectrum. Starting at v.l.f. we tune through the radio frequency band, the ultra violet spectrum, X rays and finally gamma rays. Nothing very remarkable happens throughout this whole range of frequencies until we reach a frequenc two particles, a positron and an electron, appear before our eyes, formed only from the radio waves at tha frequency - no pepper, no salt, no green cheese- of matier.
It is clear that, over three-quarters of century after the discovery of the electron, no model had been suggested which could account for more than one or two of its many properties. Its greatest property had no quantitative explaperty is its inertia and the only suggestion to explain this, that due to Ernst Mach; was entirely a qualitative hypothesis which could not account for and inertial force.

Orot $t_{2}=\frac{t}{6}+28 t$
Fig. 2. (a) The effect of maintaining a the interval, ot, taken by the radiation to complete one round trip in a cavity such as that in Fig. 1. The cavity continues to move forward at velocity produced by a motive forc maintained constant for a time $38 t$. In the limit, for a very large number of steps, the staircase approximates to

Phase-locked cavities
or about a decade a small research group at the Electronics Laboratory of the University of Kent had been trying
to understand the electron, and, as a first step, they made it their job to clarify what happens when system otate. One might have expected tha verything was known about rotating in the course of this research it wa necessary to consider what happened to the units of length and time when they were accelerated, for only in this way could one express the measurement thing that he measured had to be in
erms of his local units. The question then arose that no one had solved th problem of the accelerated measurin W. H. McCrea had gone part of the way towards the answer when h to be made of a substance in which the velocity of sound was equal to th elocity of light. In a private conversa on at a dinner in Oxford in 1972 h suggested that this might requir uthor's suggestion that the measurin od would be simply a standing elec tromagnetic wave on the grounds tha his would have no rest mass. I wa molecules could not be applied to the electron so I took up McCrea's chal enge and within a few days I was able to show that a trapped standing wave not only had rest mass, it possessed the had started moving it could only be stopped by applying a restraining force The physical mechanism is really very simple. Fig. 1 shows a macroscopic sys tem in which a standing wave is trapped between two plates carrying equal and that they precisely balance the radia tion pressure of the wave. If the left boundary is given a small velocity to the right, the wave reflected from it has a slightly higher energy and it wavelength is reflected from the far end where it exerts a small excess pressure on the boundary, causing it to move to the right. The wave is then reflecte back to the original end, closing the
feedback loop; but a simple calculation hows that when it comes back from the oving boundary on the right it is redder and less energetic than the or ginal wave in the cavity so that it pulls he left hand boundary. If the origina ystem has no option but to continu oving to the right. It has gained en rgy relative to the laboratory but to an observer moving with it on the boun dary it still has the original energy an apped standing wave. Thus the sys em has acquired inertia entirely from its own properties and without help from the distant masses of the universe
The effects of this are legion, for inertia ffects our daily lives even more than gravity.
Newton's Second Law ($F=m a$) and ut from the above but it turns out that Newton's law is very slightly modified time that it takes for the excess radia ion to complete the feedback loop therwise the excess is radiated back into space. Furthermore, if the push applied for a considerably longer tim 'staircase' of velocity (Fig. 2). It accelerates in little jerks because the
trans
transfer function of the system is，quite classically，quantised by the feedbac attain the final velocity．If externa radiation in the form of a c．w．signa falls upon a phase－locked cavity the delay in the feedback loop causes it to in the＂Radio waves or photons？＂ and to register the quantum jumps of Fig．2．Are the quantum jumps the righ lectromagnetic wave that we with the with the annihilation of the electron， hen the quantum jumps are precisel Planck＇s quantum of action．It looks as hough，at last，we may be on the righ
 of the electron that are shared by phase－locked cavity？
Since the mid nineteen－twenties has been known that the electron spin but that its angular momentum about its own axis is only half that to be us see if a phase－locked cavity exhibits he same feature．Fig． 1 shows that if we re to analyse a complete phase－locked cavity system then the total energy nergy and sum of the trapped wave nergy and the potential energy re he stored energy of the capacitor．The onfiguration shown in Fig． 1 cannot be pplied to the electron，for the maxi mum of the electric field at the centre is rotated about the centre point．We herefore consider the＇push－pull anding wave shown in Fig．3．Let it b f unit cross－sectional area and let it b nergy maintaining the dotted potentia aries to either side．These boundarie may be formed quite naturally from pinning the system and we will no pecify further until we hav mpleted our analys
Using similar units to Einstein（1905） aves in the cavity at rest is $A^{2} / 8$ where A is the amplitude of either the lectric or magnetic field．If the central node is caused to move，the energy ensity and the volume occupied by the ransformed．The cross－sectional area oes not change but，as we are con sidering a phase－locked system，the length of the system to each side of the node is the effective length of the tot
travelling wave packet on each side
We now consider that the
We now consider that the centra Both of the component travelling waves to the right of the node have more energy and both of those to the left have less energy than when at rest since the radiation within the time reaken to the plete the feedback loop．Thus the total energy E_{T} of the system to an observer on the moving node is given by the

The transformed energy density time he right E^{\prime} plus the transformed energy density times the total trans ormed wave length to the left，$E^{\prime}{ }_{W L}$ ： $E_{T}^{\prime}=E_{P}^{\prime}+E_{W R}^{\prime}+E_{W L}^{\prime}$
$E_{P}^{\prime}+\frac{A^{2}}{8 \pi}\left(\frac{1+v / c}{1-v / c}\right) \frac{\lambda}{2}\left(\frac{1-v / c}{1+v / c}\right)^{1 / 2}+$
$\frac{A^{2}}{8 \pi}\left(\frac{1-v / c}{1+v / c}\right) \cdot \frac{\lambda}{2}\left(\frac{1+v / c}{1-v / c}\right)$
$=E_{p}^{\prime}+\frac{A^{2} \lambda}{16 \pi}\left[\left(\frac{1+v / c}{1-v / c}\right)^{1 / 2}+\left(\frac{1-v / c}{1+v / c}\right)^{1 / 2}\right]$
he radiation pressure（Einstein 1905） the moving nod tem on the left is
$P_{L}^{\prime}=\frac{2 A^{2}}{8 \pi}\left(\frac{1-v / c}{1+v / c}\right)$
nd that from the wave system on the ight is
$P_{R}^{\prime}=\frac{2 A^{2}}{8 \pi}\left(\frac{1+v / c}{1-v / c}\right)$
The difference in these two expressions gives the force δF^{\prime} on the unit area a the node
$\delta F^{\prime}=\frac{A^{2}}{4 \pi}\left(\frac{1+v / c}{1-v / c}-\frac{1-v / c}{1+v / c}\right)$
From（1）
$\frac{A^{2}}{4 \pi}=\frac{4\left(E_{T}^{\prime}-E_{P}^{\prime}\right)}{\lambda\left[\left(\frac{1+v / c}{1-v / c}\right)^{1 / 2}+\left(\frac{1-v / c}{1+v / c}\right)^{1 / 2}\right]}$
Therefore
$\delta F^{1}=\frac{4}{\lambda}\left(E_{T}^{\prime}-E_{P}^{\prime}\right)\left[\left(\frac{1+v / c}{1-v / c}\right)^{1 / 2}-\left(\frac{1-v / c}{1+v / c}\right)^{k}\right]$
$=\frac{8\left(E_{T}^{\prime}-E_{\mathrm{P}}^{\prime}\right)}{\lambda\left(1-v^{2} / c^{2}\right)^{1 / 2}} \cdot$
（3）
We may replace λ by $2 c \delta t$ where δt is the
time taken by a wave to complete the feedback loop by travelling out from the node and back again
The force that we
of enormous that we have established is per second when v^{2} / c^{2} is only 10^{-17} metre we may drop the expression $\left(1-v^{2} / c^{2}\right)^{1 / 2}$ and state to first order
$\delta F=\frac{2}{c^{2}}\left(E_{T}-E_{p}\right) \cdot \frac{2 \nu}{\delta t}$
But $2 v / \delta t$ is the acceleration over a complete feedback cycle，hence
$\delta F=\frac{2}{c^{2}}\left(E_{T}-E_{P}\right) \cdot a$
But，in the rest state，the wave energy equals the binding energy and they together comprise the total energy hence
$\delta F=\frac{E_{T}}{c^{2}} \cdot a=m_{0} a$ ．
and $E=m_{0} c^{2}$ at the same time．It would tions quite simply derive these rela second order terms at the outset the this analysis is enlightening in that eq （4）shows that only half of the total energy comprising the inertial mass contributes actively to the inertial force．
The law of inertia would be twice as The law of inertia would be twice as
efficient $\left(\delta F=2 m_{o} a\right.$ ）if the potential energy also contributed to the inertial force of a phase－locked cavity，i．e．if the transformation of E_{P} had a first order component．Thus if a particle is formed
entirely from an electromagnetic wave， half of the wave system actively pro duces the inertial phenomenon，whilst the other half is equally essential but plays a passive role．Once a complete locked system，it can interact with ex－ ternal forces completely in accordance with the laws of mechanics；in particu－ lar，its total mass is available to produce reaction to an impressed force．In con－ a closed loop wave packet then we do not have a situation where the waves act on existing particles and we may only employ half of the wave energy in Thus，for entirelye component． some laws of mechanics break down when applied within elementary phase－ locked systems though they are per－ fectly valid for the external behaviour of the complete systems．The concept of
moment of inertia is based upon the concept of inertial mass as it appears in Newton＇s law．If the concept is applied internally to a rotating phase－locked cavity，then only half of the energy is actively operational，thus：The moment its own axis is half that which is given by the classical mechanics of an exter－ nally equivalent system composed of If we identify an electron with a phase－locked cavity formed entirely wish to establish its internal angular momentum，then we must reserve half of the total internal energy for the passive role so that the internal angular which would be given by considering the total energy of the system
It is suggested that this is the classical origin of the（anomalous）spin angula momentum of the electron and othe fundamental particles．Furthermore，a an electron with its internal angula momentum should give a value which is twice that observable for the behaviour of the complete phase－locked particle in motion around a distant nucleus．：It is anomalous magnetic moment of the lectron．
Apart from accounting for the eno mous forces of inertia which affect our principle of the phase－locked cavit

appears to reconcile many of the dif ferences between the classical and quantum behaviour of matter．A phase locked relationship between an quantised fluence and an elementary mass；fur－ thermore it has an anomalous equi－ valent mass for the application of the classical laws of mechanics to its inter－ accepts that there is a unique wavelength（the Compton Wavelength） at which electromagnetic waves can lock into a closed loop system，then a following properties of an electron： inertia；quantised transfer function；rest mass；angular momentum（half classi－ cal）；electric field equivalent to a localised charge；magnetic moment（in－ the proper units of length and time when accelerated to a different fram indeterminacy arising from lack of knowledge of the phase of waves．
We cannot，of course，see an electron tron to move smartly out of the way in accordance with the principles that we have just established，but we can，on the basis of this analysis，set up a mode teristics．This tentative model would consist of two spinning standing waves somewhat like that in Fig． 3 ，set at righ angles and electrically in phase quadra ture．Preliminary investigations suggest system equivalent to two traveling
wave systems of double the frequenc rotating in an annular manner around he centre as seen from the laboratory he electric fields of the waves would pointing either inwards or outward ccording to the sense of rotation，and he magnetic fields of the waves com bine to form a dipole field through the centre．
At the moment we need just one Astulate to apply a model such as thi that，at the annihilation wavelength， nature permits such a configuration t lock in perfect equilibrium．This one postulate then dispenses with all the descriptions of the electron，inertia and he quantum theory．What does this tel us about the photon concept？A phase cked cavity will respond in a quan waves or a continuous a signal but，when it surrenders its excess energy，thi appears in simple short wave trains o adiation which may then mix with ther free wave trains perfectly in erty of Fourier theory The photon is quite classica！！
Is it possible to make a macroscopic phase－locked cavity？We have mad wo in the Electronics Laboratories a ight and the other using radio waves． The radio wave version is shown in Fig 4．Though this is by no means a perfec analogue，it clearly demonstrates a sys of wavelengths between the boun－ of wavelengths between the boun－

Thus we derive Newtons
he frictional losses are cancelled and slight push at one end then causes the wo trolleys to move freely as a singl article．Small noise perturbations ar ther amusing for they cause the sys erform unpredictable little dances he manner of one－dimensional macroscopic Brownian motion．It is ossible to make this system from assembly feeding the horn on the left ad a $21 / 2$ inch loudspeaker carrying th eflector on the right．A tiny two－tur oop in the plane of the reflector feeds a 0 an audio amplifier synchronous de ector and power amplifier feeding small motor on the same trolley．A similar arrangement is associated with crystal diode and detector loo mounted left trolley and it is advisable to nclude an isolator or attenuator be ween the Gunn diode assembly and the horn in order to reduce pulling of th scillator by the reflector on th opposite trolley．The loudspeaker is bout 120 Hz and the synchronous de ectors are referenced to the sam 20 Hz source．
It is possible to construct analogue of many aspects of this work but de
monstrations of inertia are all around us．The next time you stub your toe o old on to your seat belt remember t blame all the little feedback loops for ut feedback none of this would be possible；if we could form a stable self contained particle entirely from static lields we might be able to have energy without inertia but there would be no phase－locking principle to regulate its also defy gravity？This analysis is reassuring in that it preserves Einstein Principle of Equivalence and does no reduce it to a Principle of Identity bet

eferences

Dirac，P．A．M．，1973，＂The Physicist＇s Con－
eption of Nature，＂Ed．J．Mehra，D．Reidel， ception
1．14．
1．
instein，A．，1905，Ann．Phys．Lpz 17 （Eng－ sh translation in＂The Principle of Relativity＂，Dover Publications，1952） Ch．28，Addison－Wesley． Heisenberg，W．，1973，＂The Physicist＇s Con－
ception of Nature，＂Ed．J．Mehra，D．Reidel， eption of Nature，＂Ed．J．Mehra，D．Reide Jennison，R．C．，1978，J．Phys．A．Math．Gen Jennison，R．C．，
II，15555－1533．，
Jennison，R．C．and Drinkwater，A．J．，1977，J．
 ohrich，F．， 1973 ，＂The Physicist＇s Concep
ion of Nature，＂Ed．J．Mehra，D．Reidel ${ }_{\text {Rosenfeld，L．，1973，＂The Physicists＇s Con－}}$ eeption of Nature，＂Ed．J．Mehra，D．Reidel，
Van derder Waerden，B．L．，1973，＂The Physicist＇s
Ver Conception of
Reidel， $276-285$ ．

P．A．M．，1973，＂The Phy
．Reidel，展
a

1 －
？
共 ，
 ． ，陽 － ． －號

[^3][^4]
World records tumble From Doug Hutchinson, ZR6JH

 From Doug Hutchinson, ZR6JH comedetails of a new 144 MHz transequatorial details of a new 144 MHz transequatorial
two-way record set up on February 13 between David Larsen,
half of the Pretoria Tessa Group and Costas Fimerelis, SVIDH in Athens: a great-circle distance of about 7100 km . ZS6DN runs 140W into a 4 by 12 element widespread Yagiaerial (mea-
sured gain 19.5dB). The aerial at SV1DH is a 14-element Parabeam. Following the initial contact there have been fairly regular TEP openings over this very long path at around 1800GMT and
SV1AB, Athens and ZS6LN in South Africa have joined this 'net' on occasions. The Tessa group includes Dr Fred Anderson, ZS6PW, John McCoy, ZS6JM and Doug Hutchinson. Attempts are being made to measure the transit
time of signals to determine actual path length.
In Australia a new 1296 MHz world
record was established on December 29 record was established on December 29, 1978 with a contact between VK6KZ/P,
Walpole in south-west Western Aust Walpole in south-west Western Aust-
ralia and VK5MC about 300 km southeast of Adelaide: a distance of 2109 km . VK6KZ/P used about 3W output to a 1-metre 1 ish aer to a 6.5 m dish.
Following m
tion during January, February and March of signals from North and South America and southern Africa comes news of a new two-way 50 MHz record contact between LU8AHW Argentina
and HL9TG in Korea. On the evening of March 20, SV1AB and SV1DH in Athens, Greece positively identified signals from the 432MHz beacon station ZE2VV, Salisbury, Rhodesia - only the
second reported example of longdistance transequatorial propagation at u.h.f.

Encouraging more c.w.

To a substantial minority of amateurs, the essence of enjoyable h.f. operating is the use of manual Morse (c.w.). Many
consider this to be the most effective means of communicating information between amateurs of different countries, often with no common language except 'telegraphese'; it permits the use of relatively simple equipment (though
presenting its own technical challenges) presenting its own technical chatenges)
and low-cost aerials; and offers the most economical use of the radio spectrum. Not everyone, of course, shares these views and some bolster up their impatience with the tedious and time-
consuming process involved in becoming a proficient c.w. operator by shrugging off this mode as 'old-fashioned' and by pointing to the growing popularity of s.s.b., slow-scan tv, r.t.t.t.y. and even automatic electronic conversion of
Morse into visual displays. The aban donment of the short-lived post-war regulations that made c.w. obligatory in the UK for the first year and the subse-

quent introduction of Class B v.h.f. licences with no Morse required have have no many present-day amateurs operating or no experience beyond that of passing the 12 w.p.m. Post Office test for Class A licences.
Although there is still a great deal of on v.h.f.) much of his is by (and some countries still of this is by amateurs in c.w. period or those who have held c.w. period or those who have held come into the hobby with a background of military or commercial operating. In recent months, however, there have use of CW . in the UK and Europe "European CW Association" has been formed by several clubs such as "Tops", the G-QRP-Club and Swedish and German "CW Activity" groups. The aims are to encourage c.w. operating, to bring c.w. operators together in regular sessions. The Association is currently investigating potential support among other amateurs for a "novice" c.w.-only icence to be introduced into the UK and already available in North America Australia etc. (e.g. simple technical examination, 5w.p.m. Morse test, 10 W rystal-controlled transmi ents of some h.f. bands). 'Worked All Continents' award to amateurs who make contact with all six continents using no more than 5 watts input c.w. or 3.6 watts p.ep. on s.s.b

Secrets of RSS

After almost 40 years of silence, longguarded secrets of the work carried out between $1939-45$ by British radio amateurs enrolled as Voluntary Interceptors
into the Radio Security Service or as members of Special Communications Unit No 3 have been revealed in a BBC East of England television programme.

This follows some two years of research by Paul Wright, G3SEM, of BBC Norbe networked, traces the origins of radio interception and signals intelligence in World War I and its growth into an effective and highly fruitful branch of intelligence during world War II. RSS set up by MI5 to listen for beacon
signals to aircraft, was transferred to MI6 to keep track of the elaborate net works of German military intelligence (Abwehr) communications that spread ut all over Europe, North Africa and America.
More than 1,000 volunteers listened in their own homes to the signals passing burg, Vienna and Wiesbaden and the hundreds of out-stations, including clandestine links with spies and busy circuits linking Abwehr offices. Interception of this traffic not only
represented a unique source of intelligence but also played a vital role in deception strategy, including the Double-Cross playback of controlled German agents in the UK and Middle nature of the messages they received, and many believed they were listening o Resistance traffic. Only one major breach of security occurred when in tap Nazi code" appeared in the Daily tap Nazi code appeared in the Daily there is no evidence that this slip was potted by the Germans.
From the end of 1941 a considerable number of the VIs were recruited for full-time interception duties at Hans fo stations was largely nanned of d.f. stations was largely manned by
them, as a separate intelligence organisation to the " Y " service which copied German service traffic. The VI logs were sent by post to Box 25 , Barnet and Park Although many of those concer ned with the setting-up and running of RSS, including Brigadier GambierParry and Lord Sandhurst, have since died, the BBC recorded interviews with some of the many people involved in
this work, including Colonel 'Ted' Maltby, Colonel Hornsby, Professor Hugh Trevor-Roper, Robin Addie (G8LT), 'Dud' Charman (G6CJ), Arthur Watts (G6UN), Louis Varney (G5RV), Eric Chambers (G2FYT), Dr Gee
(G2UK), Pat Hawker (G3VA), 'Gerry' Openshaw (G2BTO) Norman Sedgwick (G8WV), the late George Edwards (G2UX) and Hugo Lawley.
Prof. Hugh Trevor-Roper revealed that the activities of "Cicero", the Ger man spy in the British Embassy in Tur-
key, were fully ligence through these intercepts.

Bookshelf loudspeaker Mk II

Improvements to the October 1977 design
by Jim Wilkinson, Sony Broadcast

Following the publication of the origin
ioudspeaker article' KEF ceased production of the T15 tweeter used in the design. Although existing stocks would meet the initial demand, in order to
ensure the usefulness of the loudspeak for several years to come an alternative tweeter had to be found. A unit which meets the performance criteria is the
Audax HD13D34H This unit is Audax HD13D34H. This unit is now being fited to several new commercial
design for some time to come. Introducing this new unit initiated further rounds of measurements which revealed some shortcomings in the original theory and
this article reveals the details of the new design:
THE ORIGINAL loudspeaker included a number of features which are retained, order crossover network. The high rate of cut-off (24 dB per octave) ensures that the response of each unit does not have to be maintained more than one octave the more common 3rd order Butterworth filter, the 4th order network is instrumental in obtaining a symmetrical vertical polar pattern, by ensuring and treble units are identical and independent of frequency. Although the crossover network is one of the most complex available today, the trend towards more involved networks is simpler networks cannot achieve the same performance. Even so, the total cost of one network is less than the cheaper drive unit. This particular netexceptionally easy to drive. Another retained driv
staggered drive units. This method is the second stage in obtaining a totally symmetrical polar pattern. Essentially required' to align the voice coils of bass account for any additional errors introduced by these units. It is accepted that
a high quality loudspeaker should have a high quality loudspeaker should have a wide (and symmetrical) horizontal
dispersion for realistic performance. It dispersion for realistic performance. It
follows, therefore, that such a loudspeaker should also have a wide and symmetrical vertical dispersion and
since even the 4th order crossover is since even the 4th order crossover is octaves then inserting the correct time

No change is required in the enclosure No change is required in the enclosure
volume, but considerable thought has been given to the internal shape. A simple box with rectangular sides and parallel walls quite readily allows a whole series of resonant modes. The
formation of standing waves in such a cabinet is well documented and it is normal to fit large amounts of acoustic wadding to absorb the energy,, thus attenuating the standing waves. Solutions to the cabinet wall resonances but often they only succeed in raising the frequencies of the resonant points rather than attenuating the level of vibration. A mathematical study of the
modes of vibration is complex but a useful starting point is given in ref. 2 The modes of vibration of a panel of length l, and width w, are a function of these two dimensions and give rise to preferential frequencies of vibration practical way of eliminating pane vibrations for a cabinet of this size. On the other hand, if these modes could be distributed over a band, then the Q of each resonance would be lowered
Consequently, the panel frequencie would be more evenly distributed and this can be achieved by using non rectangular cabinet walls.
A cabinet which employs non-paralle sided walls will, in a like fashion, lowe
the O of each standing wave. By com the Q of each standing wave. By com-
bining these two techniques, a significant improvement in cabine resonances can be achieved. Some con

evaluating various cabinet shapes, con centrating on those which could be build by the amateur and which would be pleasing to the eye. Further points of consideration are cabinet diffraction units. The only rectangular panel is the baffle but here the drive units themselves break up the standing wave patterns. The chamfered corners at the front of the cabinet help reduce acoustic sharp boundaries. . A cabinet based on this shape was built and compared directly against the original. The latter cabinet never showed any signs of boxiness, indeed
the triangular bracing and extra thick rear wall should have eliminated any such possibility. The new cabinet definitely sounds better and experiments have shown that it is not a simple diffraction effect. The difference seems new cabinet being slightly more mellow in character. Interchanging the drive units and crossover proved that the cabinet itself was providing the difretain the original cabinet whilst updating the tweeter can easily do so provided, of course, the new crossover network is installed. The improvement is still worthwhile
the same as the original design, but the use of non-rectangular joints means that a multi-angled power saw and circular sander are almost mandatory. The overall method of construction is article. There is, however, an additional bracing piece which is placed between the centres of the two side walls of the cabinet, these two walls being the tight fit which is glued prior to hammering into place. The internal walls of the cabinet are coated with a layer of car underseal (or Rubberoid mastic, then about 75% of the merchants), area is further damped by pinning on bitmus felt panels. The recommended acoustic wadding consists of two rolls of 2 in 3 baf, each roll formed from a piece $3 \mathrm{ft} \times 9 \mathrm{in}(914 \mathrm{~mm} \times 228 \mathrm{~mm})$. The
rolls are fitted into the top and bottom halves of the cabinet, separated by the centre brace.
When the drive units are fitted to the baffle a new piece of timber (12 mm
thick) is fitted to present a continuous surface between the bottom of the tweeter diaphragm and the top edge of the bass unit, which functions as an anti-reflection fillet. This prevents unwin of the bass unit sub bafle (Fig 4).

The crossover circuit
This is the most complex area of any loudspeaker design and is in this case the result of considerable thought. Over the past few years, several manufac turers have produced loudspeakers which preserve waveform fidelity,
claiming that waveform distortion is audible. The 4th order crossover network produces gross waveform distortions (Fig. 5) which should be audible were the ear sensitive to phase shifts. A
simple test was arranged in order to make listening tests of this distortion and an active network of the type shown in Fig. 5 was built to simulate the effect of such a circuit. This was inloudspeaker via a switch By switching the network in and out, this waveform could be introduced. The loudspeaker used in the test had its own minor waveform distortion, but further difference. None of the three listeners (all experienced hi-fi enthusiasts) could detect any difference using either music or white noise sources, although, when a square wave at 500 Hz was applied a
slight tonal change could be heard. Further tests showed that there was a 0.25 dB gain difference between the high and low pass filters. This error was corrected and the tests resumed. Now no type of source, emphasing just how carefully any test should be controlled before attaching significance to the result.
At least one other designer has 4th order crossover conclusion for the way implies that phase distortion of any kind cannot be heard since gross errors have been proved audible, but that the level introduced by this type of
crossover is inaudible. One of the most im any crossover network is the met compensating for drive unit deficiences. Early theoretical work showed that radiator would rise with increasing frequency (tending towards $6 \mathrm{~dB} /$ octave), this being coupled with a reduction in the radiation angle. The exact frequency at which this effect starts to become significant is a com-

Fig. 4. Location and effect of filler piece

臼
Fig. 5. Active filter network showing
typical 4th order waveform distortion
plex function of the effective cone diameter, the shape of the cone and the cross the wavefront propagatio ponse is coupled with cone resonanc "bects (the drum effect, also known as "bell modes," is explained mathemat effects, roll surround reflections, the voice coil inductance and the high frequency cut-off between the voice coil and the cone. All these effects will response which is complex and difficult o understand.
Any practical crossover will attemp o compensate for the overall effet

Fig. 6. The
signals applied to the
ape B200 and HD13D34H
(a) signals to
crossover (b) signal to B200 (c) signal to
HD13D34H

no single network has been found which will give the desired response. However, tions helps to solve the problem. The first is the addition of a suckout filter, the second a modification of one of the The crossover frequency has been set at

$$
\begin{aligned}
& \text { where } R_{x}=\frac{R_{L} R_{p}}{R_{L}+R_{p}}
\end{aligned}
$$

Fig. 7. Suckout filter
related equations

(1) $\operatorname{Loss}_{(\text {max })}=\frac{R_{s} R_{L}}{R_{D}^{1}\left(R_{s}+R_{L}\right)+R_{s} R_{L}}$
(2) $R_{D}^{1}+\frac{R_{S} R_{L}}{R_{S}+R_{L}}=R_{L}$
(3) $C_{s}=\frac{L_{p}}{R_{L}{ }^{2}} \quad$ (4) $L_{s}=C_{P} R_{L}^{2}$

Fig. 8. 1.2kHz filter circuit and network
conditions
2.2 kHz , but one of the low pass Butterworth filters has been lowered to give a -3 dB point at 1.3 kHz . This results in the bass unit emed to the terminals of the left-hand response of Fig. 6. The tweeter needs only one compensating network for a peak of 3.5 dB at 11 kHz . The suck-

out is evident from the right-hand res ponse of Fig. 6 which is the signa

$$
\begin{aligned}
& \text { applied to the tweeter. } \\
& \text { The nrincinle of cas }
\end{aligned}
$$

The principle of cascading 2 nd orde Butterworth filters to produce the 4th order high and low pass filters was explained in the original article. How ever, in this network there is a requirement for cascading the Butterworth
filters with the suckout filter and the basic suckout filter is shown in Fig. 7, the related equations being in the ' s domain. The dotted line shows the effect of increasing the value of the inductance (the capacitance being de-
creased by the same factor). The response showing the input impedance of the network displays clearly that this is far from resistive and is, therefore, unsuitable for cascading. Adding a second problem provided the set network conditions are met (Fig. 8). This network is used to compensate for a broad peak (at 1.2 kHz) in the bass unit response. A simple network based on Fig. 6 is used
to compensate for this response ano-
 loudspeaker. All warm day. A framework, some 3 m dry, warm day. A framework, some sm the microphone supported on its tripod. Some reflections are bound to occur at this height and cancellation effects can 9 seen at $120 \mathrm{~Hz}, 170 \mathrm{~Hz}$ and 260 Hz . Fig. unit, which also indicates the effectiveness of the compensation networks. Fig. 10 , parts a, b and c show the response of the completed loudspeaker on axis, 30° horizontally off axis and 45° horizon-
tally off axis respectively. Lowering the crossover frequency from 3 kHz to 2.2 kHz has ensured a wide horizontal response which is evident from these readings.
One point which could cause trouble is that, in lowering the crossover
frequency, the tweeter could possibly frequency, into frequency doubling problems. The power to the tweeter is reduced by a factor of 0.25 so that it matches the sensitivity of the bass unit. This means that the loudspeaker can accept at least 25 W at any frequency. A level of 25 W was applied, sweeping the frequency
over the full audio range. With the bass unit replaced by a load resistor, no obvious frequency doubling occurred in the tweeter.
The suggested amplifier power rating is 25 to 100 W r.m.s. into 8Ω. A higher
power amplifier can actually be safer for the tweeter since the onset of distortion in a lower power amplifier produces high levels of harmonics which can easily destroy a tweeter, alchough in power headroom to make this eventuality extremely unlikely.
As one of the design objectives of this loudspeaker was to produce a symmetrical vertical polar response, it is possible to measure the phase error betment has been performed and indicates that, for ± 0.5 of an octave either side of the crossover frequency, the phase difference between the two drive units is ± 0.5 of an octave are difficult as the \pm level of one signal becomes unusable. The complete crossover network is
shown in Fig. 11 and three values of shown in Fig. 11 and three values of attenuator for the tweeter are given. If gequire two variations on the nominal setting. Note that no Zobel network is needed for the tweeter as this has a very well controlled impedance over the frequencies of interest. To obtain the best performance from the crossover ponents should be used throughout. Some leeway is permissible on the components marked with an asterisk.
The resistor power ratings allow for a continuous 25 W to be applied to the (in the general sense) is introduced by the network at this power level at any

WIRELESS WORLD, JUNE 1979

Fig. 10. Three pressure responses of the
complete loudspeaker
(a) on axis (b) 30° off axis (c) 45° off axis

Fig. 11. Full schematic of the cross-over network

Jim Wilkinson studied at Sheffield Poly.
technic prior to ioining Marconi Ellitit technic prior to joining Marconi Elliott
Avionics where he worked on raster-based avionic display systems. Subsequently he joined the IBA, working for over four years on digital video equipment, specialising in coders. He is currently a project engineer in the advanced development laboratories of
Sony Broadcast
requency in the audio band using in ductors from the recommended sup plier. The network's design accounts fo each inductor's resistance and the us of air-cored inductors is not recom eould be achieved. Further, the effect o sing an active crossover network has een simulated and no real advantage emerged over the use of passive com ponents apart from a slight improve esonance Furthermore, the cost penalty for using an active network is quite high and does not have the lexibility of a passive network.
The author recorded the termina which emerged as $8 \Omega(+3 \Omega$ or $-1 \Omega)$ and $0^{\circ} \pm 10^{\circ}$ for magnitude and phase res pectively, showing that the loudspeake is easily driven by any amplifier.
Frequency traces were made using a
Bruel and Kjaer frequency respons recorder. The materials for acousti damping of the cabinet comprise thre bitumenised felt panels, approximately in by 7 in and two pieces of baf wad ing, 36 in by 9 in . Where difficuties are components and materials, these are al vailable from Falcon Acoustics, Tabo House, Norwich Road, Mulbarton, N orwich, or any of this company's sup pliers.

References
Wikinson, J. H. "A high quality bookshe loudspeaker," Wireless World, October 1977, p. K -46.szis Erwin Advanced Engineerin 2. Kreyszig, Erwin. Advanced Engineerin Math
453.

Further reading:

Linkwitz, Siegried. "Loudspeaker system design," Wireless World, May \& June, 1978.
Schroeder, Manfred R "Modes Hearing," Proc. I.E.E.E., Vol. 63, No. 9, Sep tember 1975.
Baranek, Leo L. "Acoustics," McGraw Hill,

Are Philips ignoring surround sound for CD?

Philips Compact Disc, first announced last
May (WW August 1978, p. 39), is a miniature May (wW August 1197, p. 39 , is a miniature
(115mm version of the 30 cm optical video disc recently test-launched by Philips Mag-
navox in the USA. Whereas the Japanese navox in the USA. Whereas the Japanese
companies favour the idea of a single highdensity player, capable of reproducing either
video discs when connected to a colour video discs when connected to a colour
television set or digital audio discs when celveniced to an audio system, Philips fav-
conned ours two players, one for video and one for
digital audio. The accent is on miniaturizadigital audio. The accent is on miniaturiza-
tion and Philips reject even the idea of a special player to handle both disc sizes. The Compact Disc will be laser scanned while rotating at constant tangential
velocity. This means a change of rotational speed from an initial 500 rev $/ \mathrm{min}$ as the laser scans the centre tracks, decreasing to 215
rev $/ \mathrm{min}$ $\mathrm{rev} / \mathrm{min}$ as it moves to the outer edge.
Coding is by 14 -bit p.c.m. with a sampling frequency of 44.33 kHz and parity bits for error correction. Left and right channels for
stereo are encoded in time multiplex fashion stereo are encoded in time multiplex fashion,
i.e. left and right-channel words introduced sequentially and alternately into the digital
stream. stream.
On paper, results from the CD system are predictaly impressive; frequency response
from 20 Hz to 2 kHz and a signal-tonoise ratio of 85 dB without pre-emphasis and 92 dB with pre-emphasis. Unfortunately a recent
demonstration at Eindhoven, Netherlands, gave no real opportunity to confirm these figures by ear. The recordings played were
lifted from analogue tapes and reproduced without any comparison with analogue orwithout any comparison with analogue or-
iginals or analogue pressings. Also the digital-to-analogue converters, a crucial link
in the chain, were bulky beasts under the in the chain, were bulky beasts under the
table on which the undeniably compact (cassette player size) CD player sat. Philips say there is no problem with miniaturization by large scale integration when - or if - the
CD standard is adopted by record companies and hardware manufacturers around the orld.
The biggest question marks concern pres sing quality and compatibility with the fu-
ture. The disc is single sided, and can offer one hour of uninterrupted stereo pro ramme. To achieve this packing dens pre
tracks are $1.66 \mu \mathrm{~m}$ apart and the pits are variable length but a constant $0.6 \mu \mathrm{~m}$ in width. The disc is pressed from PVC, coated a protective transparent surface. The laser is auto-focused on the bottom of the pits. Thus warps and sticky fingers should present no plants manage to press discs sufficiently blemish-free to play without problems? Only time will tell but there are already reports of a few of the first US video discs failing to track
properly, apparently due to pressing faults. Wireless World readers may also wonder about the one hour stereo capacity of the
115 mm disc. Because 115 mm disc. Because encoding is sequential
by time multiplexing any attempt to encode

further channels of information, e.g. for three and four-channel surround-sound formats,

 and four-channel surround-sound formats,will reduce the playing side to as little as
half-an-hour uninterrupted per disc. This half-an-hour uninterrupted per disc. This seems quite unacceptable for a system de
stined for the 21 lst century. The Philips engineers talking about Compact Disc dis played remarkable ignorance of surround of "no plans currently for quadraphonics". It was also argued that improved technology may extend playing time. Shorter wave lasers and tighter track pitching may we aunch a system with what appears to be a
logy to take up the slack? ust a few centimetres on the disant because ery readily solve the problem. But Philips laem unwilling and unlikely to consider
larger disc. At 115 mm the Compact Disc is only slightly larger than a compact cassette and Philips envisage cars of the future
equipped with CD players. If the disc were equipped with CD players. If the disc were
larger the player could not readily fit into current DIN standard car radio and cassette player mounts. Reading between the lines, it
seems that the European habit of worshipping DIN with something approaching ping DIN with something
religious fervour still persists.

BBC propagation experiments

to improve v.h.f. radio

A series of test transmissions on 90.3 MHz
from London's Crystal Palace station are providing BBC engineers with information
which will hopefully be used to assist in the planning of improvements to the UK's v.h.f. radio service. These improvements are to be
implemented in the next few years. The test implemented in the next few years. The test
transmissions are to continue for several months and will carry Radio 3 programmes ${ }^{*}$, with interruptions from time to time
announcements and other test signals. announcements and other test signals.
The engineers are particularly interested in assessing the different types of polarization which can be used in built up areas. In the
1950 's when the present v.h.f. network was planned, the most common type of receiver was a fixed mains set using an external
antenna and consequently the transmitters antenna and consequently the transmitters,
most of which were completed before 1960 , used horizontally-polarized antennas. Since that time, however, v.h.f. portables and car
radios have become available and are now widely used and in some parts of the country the v.h.f. signal is hardly adequate for the much less efficient, normally vertically
polarized antennas, which these receivers poliarized antennas, which these receivers
utilize. In most cases the mobile and portable receivers are therefore receiving the
spurious signals resulting from the spurious sig
Originally, the power output from the test transmitter was 1 kW , but when this proved to be stronger than the normal Radio 3
transmissions in the local vicinity complaints were received from listeners and it was dropped to its present 250 W . The transmitter antenna at Crystal Palace can be changed to
provide circular, slant, vertical and horizonprovide circular, slant, vertical and horizonassess their effects and the differences between them when received on mobile, port-
able and home hi-fi receivers. A family car with a receiver and a magnetic--mount antenna is used to study the effects on a
typical mobile radio and a $3 / 6 \mathrm{~dB}$ yagi typical mobile radio and a $3 / 6 \mathrm{~dB}$ y agi
mounted 10 m high on another vehicle is used to simulate the typical home hi-fi set-up for that part of the study. Portable experiments
will also be carried out eventually.

In particular, the engineers are looking for differences due to multipath propagation.
For example, there is a concensus of opinion that multipath propagation can adversely affect stereo receivers, which for true
separation across the band, but so far there is no strong evidence to support this. Two advantages
with using vertion with using vertical polarization are that
firstly, most tennas which are both simple and omnidirectional, and secondly, vertical field
strength strengths are stronger than horizontal field
strengths at ground level because there is strengus at ground evel because there is
much less ground reflection, and therefore less cancelling due to antiphasing. However it is suggested, but not proved, that vertical
reflections result from vertical obstructions such as trees, pylons and buildings and cause more distortion to vertical waves than to ${ }^{\text {* The }}$ Thermal Radio 3 service in the London area will continue unchanged on 91.3 MHz .

Conference on

data storage

An international conference on "Video and
Data Recordin"" is to from July 24 to July 27 at the University of Southampton. Since the previous conference in 1976, the area of activity has expanded to
include developments in digital techniques in signal processing in both video and audio matters and especially storage and retrieval
of data. Forty-five of data. Forty-five papers are to be presented
under six headings which are "Theory of under six headings, which are "Theory of
Recording Processes", "Magnetic Recording
Techniges Technigues and Hardware,", '"coding,
Modulation and Signal Processing" ""Ding, Modulation and Signal Processing", "Digital
Audio and Video Recording", "Information and Archival Storage and Retrieval", and "New Recording Techniques". Working equipment will be demonstrated in a small
exhibition alongside the lecture theatre Further details can be obtained from the
Conference Reistrar IERE, 99 Gower St.,
London, WC16AZ.

Growth in European mobile radio market

According to a report by an international
market research company, Frost \& Sulivan
 equipment of all kinds will increase by 60% in
"real US dollar terms" at an average annual rate of 5.5% over the next ten years. The
report ives a marke figure for 1978 of $\$ 350$ million (about $\varepsilon 167$ million) anc (predicts that
 milion thy by th7. The company's analysis
shows that the annual growth rate in the first five years will be $e 7 \%$ and will significantly
outpace the 4% growth rate in the latter five years.
Three quarters of the total West European
market will, they say, be accounted for by forket will, they say, be accounted for by
four countries, West Germany, Britain, France and Sweden. Their cumulative con-
tributions to the market over the ten year
 (E410m) respectively, amounting to more
Lhan a $\$ 4.5$ billion (E2.14 bilion) mark overall
The rep
The reportives analysit equipment in the market and this shows that Triven ef mobile radios systems will account for pubic correspondence systems 7 and adds, 'these percentage show market variations when analyzed by country," replacement equipment will take an in. creasing share of the market as p.m.r. bechanges and superex. demand forited righer perfor-
mance equipment will, according to the

Look who is using mobile radio in the UK

Without having to look at the national fig-
ures for mobile radio equipment sales, we can ures for mobile radio equipment sales, we can
see from the many snippets of information
coming into the Wireless World office coming into the Wireless World office
whether or not the demand for such units is high. Last year we learned that handportable and mobile radios were being used
by people like, and including, Harrods in by people like, and including, Harrods in
London, for security purposes, by keepers in London, for security purposes, by keepers in
zoos, to enable them to summon help should they find themselves in the unfortunate
situation of being mauled by situation of being mauled by one or more
wild animals, and increasingly by farmers wild animals, and increasingly by farmers
and council workers, among others, for keeping in touch with, their colleagues when
they are working in remote areas. they are working in remote areas. This year we can again conclude that the
demand for mobile radio equipment is high because the snippets of information are even
more numerous and the users of the evio more numerous and the users of the equip-
ment are just as varied. For example: Motorola Electronics have been selling selectivecalling mobile radios to an emergency
windscreen-replacement company in Swi windscreen-replacement company in Swi
don, whose vehicles operate in various UK counties. Pye Telecommunications hav been providing mobile radio systems for the
Isle of Wight ambulance service, Findus
sales representatives. ague, to solve their communications pro blems at their National Motor Museum in
Beaulieu, and Electricity Board cash colle tors to protect them from thefts. They have also been showing horticulturists an armers ho vital role to play in agriculture.
Pagers are Multitone Electric's
Pagers are Multitone Electric's speciality International's sports and recreation club, to
keep members in touch with the clubheuse Saville Colliery in Yorkshire, and the Gram pian Fire Brigade. They have also supplied
systems for the BP oil terminal in Fulham ondon, and for the ermininal in Fulham Brighton Centre, Brighton, for security purposes. Some of these pages are "bleeper
types but many are "pagephone" ypes but many are "pagephone"
transceivers which permit some two-way communications.
Despite Burndept Electronic's recent pro-
blems (see p75, March 1979 issue) they have been supplying the Home Office with perso
nal radios for the police, fire and priso
services in England and Wales. In the six of sets supplied to the Home Office was around 35,000 . Their two-way radios are also
helping to bring home the harvest in Chichester by ensuring that combine haryesters are in the right place at the right time.

A Multitone two-way pocket paging system
aiding security at the Brighton Centre Brighton.
report, result in new developments such a selective calling, especially in congested
channels. In addition, the ratio of mobile nits to base stations will increase, particuarly in Britain, though this trend may severse over the longer terms as "smal The public correspondence sector, which icludes all mobile radio equipment capable f being connected directly to the public elatively young market," with most counries planning to update from their curren manual systems
channel systems. The faster growing sector in the mobile radio market is that for pagers. The number with the value of equipment shipments in reasing at a 7% annual rate. As moder v.h.f. and u.h.f. techniques are coming into use, says he report, once-popular inductive
oop systems are becoming less and less mportant. In particular, the analysis showed hat Eurosignal pagers, recently introduced demand.
On the subject of citizens' band equipmen he report points out that, although Japanes
nd UK companies currently dominate the market place, other suppliers are finding successful "niches" by specializing in pro ducts aimed at particular communities. Other findings of the study indicate that specially in Britain, foreign vendors are "attractive market to outside suppliens" axtractive market to outside suppliers, ${ }^{\text {in }}$ radio over the ten year period.

- The possibility of operating land mobile spacing of only 5 kHz by the use of channel been privately demonstrated by Pye UK industry and potent to people in the 95). The use of s.s.b. for narrow band working has also been field tested by Dr Bruce Lusig. in the States (News of the Month, June 1978, p.48).

PO's largest satellite earth terminal operational
The first earth terminal at the Post Office's
new satellite earth station at Madley near new satellite earth station at Madley near
Hereford was inaugurated by Mi Peter Benton, the PO's Telecommunications MD, on
April 11.'This terminal, Madley 1 , is the April 11. This terminal, Madley 1 , is the
second in six months to be handed over to the Post Office by Marconi Communication Systems Ltde, bye prime contractors. . The pree
vious terminal, which became operational vious terminal, which became operational
towards the end of last year, was Goonhilly 4 in Corrwall (see p. 63 , Dec. 1978 issue).
Unike Goonhily 4 , which operates in Unlike Goonhilly 4 , which operates in the
$11 / 14 \mathrm{GHz}$ bands to the test satelite OTS-2, $11 / 14 \mathrm{GHz}$ bands to the test satellite OTS-2,
Madley 1 operates in the $4 / 6 \mathrm{GHz}$ bands, currently to Intelsat IVA** over the
Indian Ocean. It is one of the largest earth Indian Ocean. It it one of the largest earth
terminals operating in the Intelsat system terminal can be used with Atlantic satellites as and can be used with Atlantic sateentes as
well as Indian Ocean satellites. Madley 1 ,
with its with its 32 m antenna, which is almost twice he size of that on Goonhilly 4, has actually
been in operation since Nov. 19, 1978, and provides a large cäpacity for telephone, telex and television traffic. With 55 chains of ting equipment and ten high-power timp equipment adley 1 is capable of com
ampifiers. Mide
municaing with about 40 countries simult municating with about 40 countries simult-
aneously and Marconi is already manufacturing equipment to extend this capacity. Contracts have already been placed and which is to come into service next year, and another is to follow in 1981. According to the ost Office, Madiey will eventually have u

Madley 1, the Post Office's largest dish antenna (32 m diameter). It can carry. up to 2000 phone, telex or computer
data calls, as well as tv pictures, data calls, as well as tv pictures,
between Britain and East Africa Middle and Far East, India, Australia and New Zealand.
has four operational antennas, is likely to get
another four in the early 1980 's . is foreseen another four in the early 1980 's. It is foreseen that Madley 1 will be used with the next
generation of international telecommunication satellites, Intelsat V. This would double the system capacity.
Marconi Communication Systems co

Transmitter hijacking no joke

An IBA advertisement in the appointments exchange and was a spare line. The wordings section of Wireless World (p. 137 , April issue) was clearly an Aprioural and a somewhat
sive one for the journ embarrassing one for the IBA - but nonetheless it has interesting undertones. The advertisement referred to a vacancy for operating procedures to protect the IBA's ransmitters from being electronical gramme signal with a private signal). In cidentally it also appeared in the April issue of Broadcasting Systems and Operations, the
new broadcasting journal, and coincidentally found itself on the same page, number 137 . At first one might think "what fools the ad-men at these t wo journals are, but o, the whole thing was very carefully plan-
ned, the timing was perfect and the "placer" had the required knowledge, relating to the advertisement procedures and copy dates The ads were placed initially by 'phone confirmed by official purchase order on o very ady professionally prepared in thotoset The advertiser knew that the IBA normally placed ads through an agency, even though such an ad placed at this late stage would not be suspect. $B S O$ and $W W$ received identica official purchase orders, they even had the
same order number, 1171, and both cam supposedly from Industrial Appointment Consultants at a London address (which The telephone number was for a Croydo
were identical and the initial phone call wa supposedly made by Robert C. Jones in both Why did they go to so much trouble? One reason may be that they were drawing
attention to their own hijacking successes in the past. For example, on April 1,1976 , a John Peel radio programme was interrupted when a BBC transmitter was hijacked - the ad-
vertiser signed the official purchase order "J Peel". Some time later another BBC transmitter was hijacked. This time the transmission was supposed to be coming from the
world's first broadcast satellite, K -sat - the reference given in the ad is "KS/AT". So where does the IBA fit in? Well, toward the end of November 1977 a News at Te
programme was interrupted with "voice programme was interrupted with voice ton transmitter was hijacked. At the time thi was not too difficult to do because the Han-
nington transmitter, like many others, is a nington transmitter, like many others, is a rebroadcast lisual signals, on separate carriers, at one
visuan
frequency near the broadcast frequency and frequency near the broadcast frequency an
re-transmits on the broadcast frequency. Al the hijackers had to do was swamp the input
"audio" frequency with a transmission on the audio" frequency with a transmission on the The IBA did monitor the sound output at that time but for one reason or another this was have been fitted with extra protection circuits. Could it be that the hijackers in this electronic war are now frustrated by these
defence tactics and are attempting to get defence tactics and are attempting to ge
their kicks another way?
ordinated the efforts of an international team
of sub-contractors, which included Mitsub of sub-contractors, which included Mirsub-
ishi Electric Corporation in Japan, Comtech
in the USA, who provided the low-noise in the USA, who provided the low-noise
amplifiers, and IDC Ltd, Marconi themselves
supplied the radio and communications ampifiers, an
suplied th
equipment.
The coniplete station is built in modular systems. Th number of individual sub parabolic antenna, supplied by Mitsubishi The antenna building, housing the steering power transmitter amplifiers, , ow-loss com-
biners, i.f./s.h.f. transmit drives, with their biners, i.f./s.s.f.f. transmit drives, with their
associated control logic, and the low-noise associated control logic, and the low-noise
cyrogenically-cooled broadband receivers. A central P.O. building houses the ground communication part of the system which
includes the s.h.f. branching, s.h.f./i.f. downincludes the s.h.f. branching, s.h.f./.i.f. downconverters, demodulators, modulators and
base-bands equipment. This building also
holds the cross-site make-up amplifier holds the cross-site make-up amplifier
operating at the s.h.f. receiver frequency, operating at the s.h.f. receiver frequency,
fixed station test facilities and all associated control and monitoring equipment.
The new station will help the Post office The new station will help the Post Office
to meet the dramatic growth in international
telephone services. At the present time there to meet the dramatic growt pesent time there
telephone services. At the present elepho nillion phone calls to and from Britain
avery month and this is doubling every four
ever every month and this is doubling every also growing at a similar rate. Intercon-
tinental calls to and from places beyond Europe account for 4 miliio
out of every ten of these
Madley 1 or through the Madley 1 , or through the station at Goonhaily. Madley 1 presently carries one million
calls a month between Britain and 40 other calls a month between Britain and 40 other
countries via Intelsat IVA and calls to some
of these countries have been growing at 30% of these countries have been growing at 30%
per year. At any one time it can carry more than 2000 calls - twice the capacity of
Goonhilly 1 which previously carried the Goonhilly 1 which previously carried the
Indian ocean satellite traffic. However, Goonhilly 1 , the first terminal to carry
satellite signals across the Atlantic in 1962 is still in use. It has been turned back to the Atlantic to provide extra capacity for the world's busiest satellite route between Britain and the USA.
The introduction
coincides with the tro the new terminal Ocean earth stations from Intell the Indian has 4000 telephone circuits, to Intelsat IVA
which is which is capable of carrying 6000 calls
simultaneous simuitaneously. Intelsat V, having twice the
capacity of Intelsat IVA, is expected to launched next year and within the next two launched next year and within the next two
years all the existing IVA satellites will be augmented by four Intelsat V systems - two over the Atlantic and two over the Indian

Ocean. | Ocean. |
| :--- |
| IDC | appointed as contractord-upon-Avon was construction of the stations buildings and undertook the civil engineering work related

to the antenna foundations and steelwork.
There is no doubt that There in no doubt that the antenna is a fine
example of a product which is the result of example of a product which is the result of
many engineering skills and sciences. many engineering skilis and sciences.
$*$ Intelsat IVA, 22,300 miles out in space, has
6000 phone circuits, television circuits and 6000 phone circuits, television circuits and SPADE (a demand assigment system which
permits greater flexibility and more efficient permits greater flexibility and more efficient
use of the satellite capacity). If used only for
television the satelite television the satellite has a capacity of 20
channels. It has 20 transponders permitting channels. It has 20 transponde
20 channels each 36 MHz wide.

POLICE COMMUNICATIONS A news item in our April 1979 issue (p.82)
pointed to an enlargement of the relationship between the Post Office, the Home Office and the police, centred on the introduction of
microprocessor-controlled police com microprocessor-controlled police com
munications headquarters in Leicestershire One or two details were inaccurate, accord ing to a Department of Transport contact
while it is possible for a police patrol car driver to check immediately on the name and address of the keeper of any car, the age of a driver or direct means. This data is apparently
such stored on files not immediately accessible to the police, although it is available via the
daily up-date on driver and vehicle details which the department sends to what is beved to be the police computer in Hendon, and not to any police establishment in relevant phrase should therefore have read through the carrier-operated main station to the Department of Transport computer in computer in Swansea."
Our Department of Transport contact
suggested that the facility extended to the osested cetres fach as that shire only permits the police to check on limited details of vehicles, and that there is no
direct liaison between the department and direct liaiso
the police.

NEWS IN BRIEF

A recently signed franchise agreement links
Semiconductor Specialists and Westcode Semiconductor, the semiconductor division hippenham. This extends the range o semiconductor manufacturing companie ight, among which are Generall Instruments, Plessey, Siliconix and Thomson-CSF. The istribution will be carried out from Semiconductor Specialists' West Drayton
base. Westcode manufactures heavy duty thyristors and rectifiers in ranges carrying up 3000 amps and voltages up to 4 kV , and full range of silicon power transistors in-
cluding 250 amp single diffused and 500 V cluding
riple diffused types.

Akai has just announced the setting up of its first UK subsidiary, which, apart from the
US, is its only major subsidiary to be established outside Japan. With 99% of the parent company's annual sales being made outside
Japan the British base of operations is ational step in the service follow-up. Aka UK, which was born in Cricklewood in February, will shortly move to a modern
complex next to Heathrow Airport.

The eighth Imeko Congress, entitled "Meas urements for Progress in Science and Tech20 29, according to the Institute of Measure ment and Control, a UK member organisa on of imeko. Further information from

Air Call Ltd has entered into an agreement to eecome the national distributor for the com-
mercial sector of the Mobile Radio Division mercial sector of the Mobile Radio Divisio
of Marconi Communication Systems, Ltd.

British industry supporting UOSAT

The University of Surrey's project to build
Britain's first amateur satellite is now being backed by British industry. Racal (Slough) Ltd have announced that they will support as it progresses over the next two years. Jim Crerar, managing director at Slough, said "This project by the University of ambitious exercise and we are pleased to be involved. Although it is strictly an amateur satellite venture, I have been very impressed with the professional approach the Univer-
sity has taken. As the project unfolds over the next two years there will be several areas where we can mutually assist each other and so increase gener."
communications."
The company is leading Racal's expansion into satelilite communications and is currently undertaking a contract to supply the
MoD Procurement Executive with a number of transportable satelite communications earth stations. So far, in addition to the financia aid - the company
disclose the amount - Racal has made test equipment available to the project team.
The project team is working in conjuncThe project team is working in conjunc-
tion with the Radio Amateur Satellite Corporation (AMSAT) and the university's electronic engineering department towards a
launch date in 1981-2. The spacecraft, to be launch date in 1981-2. The spacecraft, to be
known as UOSAT before launch, will be known as UoSAT before pacent,
quite different from the present
Oscar satellites, which so far have specifically provided improved long-distance v.h.f./.u.h.f. communications for amateut
operators. UOSAT is intended to comple ment the Oscar series as an experimental and objectives are threefold. Firstly, "to provide radio amateurs with a readily available too for the study of the propagating medium
through which they communicate and to through which they communicate and porticular to evaluate the suitability of nove methods and new requencies for use in late
Home office publishes WARC proposals for the UK
United Kingdom proposals for the World
Administrative Radio Conference to be held Administrative Radio Conference to be held
in Geneva from Sept. 24 to Nov. 30 were two parts. The first part comprises more than 300 pages and consists largely of the detailed changes the UK would wish to see made in
the international the international Radio Regulations to cater
for developments over the next 20 years. The second part, comprising 40 pages, contains a
set of set of supplementary proposals of a more
technical nature that results of a recent meeting of the International Radio Consultative Committee. UK proposals for the international table of
frequency allocations follow fairly closely the outlines given in the report issued by the Home Office in April last year - Prep aration for the
Radio Conference 1979, see p.47, July 1978 issue. By transferring many of the world's international communications onto satellites
(using earth terminals similar to Madley 1 ,
'Secondly, "to stimulate a greater degree of
interest in space sciences in schools, colleges
and universities by active participation," and Interest in space sciences in schicols,
and univesities by active particiation, and
lastly, "to study the problems associated with an inexpessive spacecraft project in the UK
and to establish an active body in this country contributing flight hardware to the AMSAT programme"-(ref. p .230, Radio
Communication, March 1979). It has been proposed that UOSAT should provide the h.f. amateur with a facility for gathering real-
time information on prevailing ionospheric time information on prevailing ionospheric
conditions and also encourage more widespread interest and activity in microwave communication, at the same time evaluating
these frequencies to see if they will these frequencies to see if they will be suit-
able for future AMSAT Oscar spacecraft. able for future AMSAT Oscar spacecraft.
There are three main groups of experimental modules proposed for UOSAT's payload. The ionospheric studies experiment
is the first and is to include is the first and is to include ehase-referenced
h.f. beacons on $7,14,21$ and 28 MHz (the main h.f. amateur bands), a magnetometer, and
radiation counters. The second is an "educaradiation counters. The second is an "educa-
tion" experiment which will comprise an
earth tion" experiment which will comprise an
earth-pointing slow-scan tv camera, and a
synthesized voice telent synthesized voice telemetry system. "Future
systems" experiments modules will include systems experim. beacons on 1.296 and 10.47 GHz , an
expan expanded CODESTORE system, a micro-
processor housek processor housekeeping system and a two-
axis stabilization system. axis stabilization system.
While most of the satellite's modules will be built at the university there will be oppor-
tunities for other amateur groups to tunities for other amateur groups to con-
tribute specific modules such as the s.h.f. tribute specinc modues such as the s.h.f.
beacons, the voice telemetry unit and the slow-scan unit. To support personnel, components and travel a sum of 885,000 has been
raised and at a meeting in February this year raised and at a meeting in Fupruary this year
the RSGB also agreed to support the project the RSGB also agreed to support
Martinly Swetat limit of E 2000 . Martin SWeeting G3YJO, the UOSAT pro-
ject manager ject manager has stressed that there is a long launch pad and it may even evolve along
different lines to those described and carry different lines to those described and carry a
see News story in this issue) the UK hopes to
see News story in this issue) the UK hopes to
increase allocations in the h.f. bands for breadcasting services, maritime com-
munications and for amateurs. The proposals munications and for amateurs. The proposals
seek to inject a greater degree of flexibility into the allocations in the h.f. bands when
black-and-white ty has black-and-white tv has been phased out, and
they also want an upward extension of the they also want an upward extension of the
f.m. sound-broadcasting band. Again, to
provide flexibility it is proped provide flexibility it is proposed that there be
a degree of sharing between broadcasting and mobile services - spread spectrum In the u.h.f. and s.h.f. ranges the UK proposes numerous changes to cope with
increases in satellite service requiremit and to provide flexibility in future space and to provide flexi
terrestrial services.
Broadly, according to the Home Office, the proposals seek to bring the radio regulations
up to date and to cater for future frequency
requirements as far as they can be foresen ents as far as they can be foreseen.
.

WITH OUR involvement in the European Community growing almost Convention of the Audio Engineering Society should be held in one of the governmental centres, Brussels. Delegates attending came from unusually far afield and included three from the
People's Republic of China! There were eight sessions in all. Those papers ref erred to are listed as references at the end of the article.

Locating items on cassettes

The topic of paper B-O was a digital lechnique for locating programm tems on a recorded cassette and methods of automatically controlling e cassette machine functions. ted for the recorded code since, when recorded at -10 dB below $250 \mathrm{n} \mathrm{Wb} / \mathrm{m}$, it would be inaudible at normal tape ead is used to read the code- as it can e designed to obviate long-wavelength interference due to pole tip dimensions. by recording the code in anti-phase on he left and right tracks of the tape, signal-to-noise performance can be head. The code may be read either in the play' mode, or in the fast wind mòdes ither forward or reverse. For this reason identical synchronisation signals are necessary at the beginning and end
of the code. These sync signals provide both a starting point and timing for the decoder.
Synchronisation is given by three ycles of a 5 Hz sine wave, the frequency the first two cycles. A total of thirteen bits is allowed for the complete code, six of which are used for synchronisation nd an additional four bits used for sync correction. The correction bits are sequence. Of the remaining combina tions, a full set of 'ones' is barred/ort the grounds that it might be confused with ther extraneous l.f. signals. Th 71 addresses. Codes one to fifty ar assigned to addresses, 51 is reserved to indicate the last item on either side of the tape and the remainder are given to special functions, po
To allow for the inertia of the tape

AES European Convention

Highlights from the papers presented at Brussels
nd mechanism in the fast wind mode the code is recorded such that a 2 second gap is left between the end of the code and the beginning of the next programme item. Adjustment of the space is achieved by first stopping the tape with the playback head in the tail to play mous item and then switching amplifier muted but with the replay amplifier muted. This allows the tape to about 4.5 seconds, bringing the playback head into the correct location on
the tape. This requires that the code be superimposed on the tail of the previous recorded item.
Detection of the signal prior to the microprocessor stage is achieved by the pression of audio or. Additional supsignals on the tape is obtained by locating the magneto-resistive head some 0.4 mm from the tape. This has the pass filter.

Microprocessor controlled cassette recorder A microprocessor controlled system of optimising bias, record preemphasis and
record amplifier gain of a cassette recorder having only a single combined record and replay head was described in
a paper presented by the chief engineer

Fig. 1. Detection circuit for locating items on cassettes

of the JVC tape recorder division (B-1), The record amplifier gain adjustment is
required to ensure the correct working points for the compander noise reduction system.
The design is best described by the sequence of events leading to the optimisation of the record channels. A
blank tape is inserted in the machine and the type of tape selected using two front-panel keys. These switch the replay amplifier to the correct time constant and set the record amplifier to mended tapes. Further 'fine tuning' of the record system is obtained, if desired, by operating the 'start' key on the microprocessor control panel which initiates
the following sequence. The tape is wound in the 'fast forward' mode for 2.5 seconds, to skip the tape leader. Then the machine switches to the 'record' mode and proceeds without recording permits some positioning errors in subsequent rewinding and play operations. An indexing tone burst signal is then recorded, followed by a 1 kHz reference and a series of 32 sections of a 6.3 kHz
test tone. At each of the sections, the test tone. At each of the sections, the
bias signal is altered by a small amount. The total recording time for this sequence is about 2 seconds.
The tape is then rewound and the recorded section replayed. Using each 6.3 kHz section is compared with that of the 1 kHz reference. The correct bias is assumed to be when the two

signals are equal. At this point, the microprocessor sets the appropriate
bias and switches the machine to the record mode.
After a further 2.5 seconds blank, the indexing tone is again recorded, followed by a kHz reference and a series of 18 steps of a 10 kHz test tone
During this the record pre-emphasis is increased, first in the left and then in the right channel, through 8 discrete values. Finally, a 1 kHz signal is recorded while the record amplifier gain is switched and replayed to determine the correct values of pre-emphasis and record amplifier gain, these values being successively set by the microprocessor. At the end of each of these sequences,
1.e.ds light to indicate successful completion.'Errors due to drop-outs or malfunction of the tape transport cause an error lamp to flash and the sequence to halt, pending the operation of either the 'reset' button or the 'start' key.

3D loudspeaker measurements In a brilliant though extremely rapid presentation (D-4), Peter Fryer and Gareth Millward of Rank Hi-Fi (Wharfedale), described some elegant
solutions to the problems of measuring decay spectra in loudspeaker components and systems.
The Fast Fourier Transform method of obtaining cumulative decay spectra by KEF Electronics. This paper de-
ig. 2. Three-dimensional displays of decay spectra of loudspeakers, with logarithmic frequency scale of 20 Hz to tone burst analysis.
scribes an alternative method of obtaining identical information using impulses or tone bursts and a simple detection system designed at the vantage is that the 'three-dimensional' display can be produced with a logarithmic frequency axis, improving the resolution at low frequencies (Fig. when compared to the FFT digital

Fig. 3. Information and trackin modulation recorded as pits on JVC audio digital disc. noise discrimination

Digital audio dises

Digital audio discs are very much a subject of popular and current concern, since development is being temporarily arrested pending international agreement on standards. The prototype sys-
tems shown or discussed during the tems shown or discussed during the
digital audio session represented proposals put forward by JVC, Sony and Philips respectively. At this stage the most complete proposal has been made by Philips (described elsewhere in this
issue) with JVC and Sony putting foward ideas which are clearly at an earlier stage of development
The JVC audio digital disc system (Paper G-1) is the only proposal which elies on a non-optical method of scancation of their video disc, the only changes being in the speed of rotation (half NTSC video speed, 1800 r.p.m.), 00 r.p.m.
The disc is a standard diameter plastic pressing, similar to a conventiona by a standard audio pressing plant. The plastic is conductive, since the pick-up Fig. 3 shows a magnified view of the Fig. 3 shows a magnified view of the pits comprising the audio or video signal, and a secondary series of longer pits between, which provide tracking pick-up assembly. Since there are no grooves in the disc,

[^5]References (by paper number)
B-0. Simons, H. "Computer coded searc system for compact cassettes. B -1. Kitamura, M et al. "Automatic charac-
teristics setting in the compact cassette player."
-4. Fryer, P A and Millward $G \cdot P$. gue loudspeaker measurement with '3-D isplay." G-1. Inoue, T et al. "Digital audio disc (AHD) $\underset{\text { system." }}{\substack{\text { G-1. Inoue }}}$

Sapphire stylus tip. Plated
inductor ted

Meteosat earth station
A low-cost receiver for meteorological facsimile pictures

by M. L. Christieson

The geostationary satellite of the European meteorological community, Meteosat, is providing user stations with data far in advance of previous meteorological satellites, both in qualit equator at zero longitude in an orbit such that it appears nearly stationary as seen from the earth. The satellite was developed by the European Space Agency (ESA) and was placed. in orbit on article describes an earth station which can be used to receive. Meteosat picture transmissions. The satellite's high orbit permits pictures of the whole globe to be
obtained instead of just a slice of Europe

METEOSAT is more than just a simple picture-taking platform. It is an essential link in a meteorological data collection and dispersal system. It takes and water vapour light every half hour, extending nearly 70 degrees great circle, and then transmits these to the ESA operation centre (ESOC) at Darmstadt, Germany, in digital form on a channel in dissemination at ESOC, the pictures are
relayed daily via Meteosat to user sta tions in Europe amd Africa on two further channels in the S band both in nalogue mode (WEFAX) and as digital data. Transponders, operating in the elay information from land-based environmental data collection platforms or collection at Darmstadt. In addition, selected pictures from the GOES E function to Meteosat over South America, are relayed by Meteosat via receiving station at Lannion in Brittany for use in Europe.
The data relayed on the two the complex an stations as much of pocessing has be thus high cost ESA n integral part of the satellite optical an integral part of the satellite optical
system. The ground station operated at present by the author uses the analogue signals and is referred to as a secondary data user station" (SDUS). he possibily of using the highe esolution digital data is bein The author had a system, based on
prewiously published designs, in operation for some time receiving pictures from the NOAA series of polar satellites. However, when the v.h. in March 1978, he was prompted to start thinking in terms of a suitable receive for Meteosat. Standard v.h.f. designs had been used for the NOAA series but with the necessity of changing to S band required.
The carrier frequencies used in the S-band transmissions are 1694.5 MHz and 1691.0 MHz on channels 1 and 2 respectively, each frequency modulated
by a 1200 Hz subcarrier, with a peak deviation of 9 kHz . The subcarrier is amplitude modulated with 80% modulation representing a white picture level and 5% modulation representing a black picture level. Base
band video is 1600 Hz and the r.f bandwidth (by Carson's rule) is 26 kHz It can be seen from this that the type of modulation used with Meteosat is the
same as that used .with the SR Fig. 1.
station.
(Scanning Radiometer) pictures from (Automatic series and the APT pictures from ESSA-8 and ATS-3.
pictures from ESSA-8 and ATS- 3 . ransmitted at the start of the pictur and this is followed by a five-second phasing signal of white level, containing 2.5 ms of black level, which indicare transmitted in 200s and comprises 800 lines, produced at the rate of 240 lines per minute, each of 800 pixels horizontal picture points). A end of the picture signal

Low-cost receiver systems
A block diagram of the Meteosat earth station is shown in Fig. 1. To reduce image nois ${ }^{2}$ an intermediat recommended for conyerters of this kind and the author's existing system which could receive the NOAA-5 requency of 137.5 MHz , therefore made convenient first i.f. stage

At these frequencies the most Altable antenna is the parabolic dish However, the one used in the station
being described is only some four feet in diameter, and is much smaller than the size recommended by ESA. If the dish was still smaller it would result in a poor signal-to-noise ratio. The feed is a simple dipole and reflector with a pre mplifier mounted at the dish focus. A did not have the test equipment re quired for its adjustment. The r.f amplifiers are identical in design and onstruction and use the same type o transistor. The amplifier's schematic
diagram is shown in Fig. 2. The tuning elements are striplines fabricated on ouble-sided $1 / 16$ in G10 glass fibre oard. The copper is left intact on the everse side and provides the ground perate with their emitters grounded so the bias is critical even though som egree of d.c. negative feedback is used. mall trimmer capacitors tune the line oresonance and are adjusted on test.

Fig. 3 shows the mechanical design o he antenna pre-amplifier, complete with its antenna and reflector assembly and Fig. 8 shows the second amplifie oxes for these assemblies are ais made from copper clad board and it is ery important when constructing them to maintain a good earth nnection from the earth plane to the box sides which connect to the r.f. the two amplifiers is the value of the bias resistance in the antenna pre-amp required to give the best signal-to-noise preset and. in pre-amp 1 its is a 2.2 K preset and in pre-amp 2 it is a fixed
resistor. The supply voltage to the antenna pre-amp is carried out to the dish on a separate cable, and the output of the pre-amp is carried to the amplifie in the converter by a short length of
UR67 coax (not more than 10 feet) When the system was first te using two BFR34A transistors, which are quite inexpensive, the picture

Fig. 2. Schematic diagram of pre-amplifier circuit.

Fig. 3. Mechanical design details for antenna

1. Scale is half full size

Two better types, NE64535s made by the Nippon Electric Company, were therefore obtained. Although these devices are more expensive they can be obtained in small quantities* and the pictures produced are of much higher
quality. The important transistor characteristics are as follows: For a frequency of 1.6 GHz , collector current of 8 mA and $V_{c c}$ of 8 V , gain is 12 dB and collector current is 65 mA
The printed circuit layout for both amplifiers is shown in Fig. 5 and for the receiver to function correctly the stripline sizes should be copied exactly. A 50Ω stripline connects the output of mixer hybrid coupler. A schematic diagram for this shown in Fig. 4. The other input is connected to the local oscillator chain output. Two hot carrier
diodes, MBDI02 types, were used in the mixer. These performed very well and are inexpensive. The $22 \mathrm{k} \Omega$ preset is initially set so that the diodes are slightly forward biased and is again adjusted on test for the best signal-to-noise ratio. Two r.f. shorts
remove the carrier and local oscillator before matching to the i.f. output via an L network. The mixer is also constructed on the same type of copper clad board as the two pre-amps, and the
earth plain is again retained. A printed circuit layout for this circuit is shown in Fig. 6. It is important to ensure direct connection between the mixer ground plane, the amplifier cillator plane.
The schematic diagram of the local oscillator is shown in Fig. 7. Two
crystals are necessary to provide the
*Available at approximately $£ 13$ each in
small quantities from Auriema Ltd, Microwave and Electronic Instruments Divisio

Fig. 5. Printed circuit layout for pre-amps 1 and 2

Fig. 6. Printed circuit layout for the mixer.

WIRELESS WORLD, JUNE 1979
two frequencies on which the satellite operates. Switching is achieved by switching could be used if preferred. The output of the oscillator, which operates in the fifth overtone mode at approximately 86 MHz , is amplified by a oscillation is prevented by a resistor connected from collector to ground. The value of this resistor can be varied and for best results the largest value
which gives stable operation should be used. A frequency doubler stage follows, bringing the frequency to 172 MHz . This is amplified and then used To drive a tripler, producing 516 MHz . upside down by the emitter straps. A small heatsink is bolted to the upward facing stud. The collector circuit is coupled to a varactor tripler and matching is achieved by a capacitor
combination with L harmonic idler circuit is formed by L_{7} feeding the varactor, a 1 N 5139 . The correct frequency is selected by a filter
comprising L_{8} and L_{9} which are both comprising L_{8} and L_{5} which are both next to each other. A small length of 508 stripline feeds the output to the mixer. Test points for monitoring the current in each stage are used for adjustment, and the final filter tuning is achieved by ${ }^{\text {TP }}$. There is more power available at 516 MHz than is really necessary, but this gives a large margin of error when tuning the system.
The entire chain is constructed on the top surface of a copper clad board, using
vertically as interstage screens. The converter is shown in Fig. 8.

Converter adjustment

Initial alignment of the oscillator antenna minimum and all capacitors set to about half their maximum values. Power is then applied to the converter from a
stabilized 12 V supply providing up to 750 mA . The output of the crystal oscillator should be checked using a frequency counter or an collectorcircuit should the The buffer for maximum current in the doubler measured at TP_{3}. The doubler can then be resonated, as indicated by maximum current in the amplifier at TP_{4} and the current taken by the tripler can be TP_{5} with respect to the 12 V line This voltage should be peaked by the amplifier collector circuit, the tuning capacitor, and the variable coupling capacitor. These are interactive. At this be used to check that all the preceding stages are tuned to the correct frequencies and all re-peaked for maximum current in the tripler 517 MHz and this should also be checked with a wavemeter or counter Preliminary adjustment of tripler is achieved by monitoring the

Fig. 7. Local oscillator circuit.

63
voltage at TP_{6}. This should be
approximately 0.7 V with no oscillator drive and should decrease to almost zero when the chain is correctly aligned. It is very easy to tune the tripler to the wrong harmonic and the only sure way to use a microwave meter or a signal fequency and loosely coupled to the rf amplifier while listening to the 137.5 MHz output. At this frequency most of he capacitors are near or at their miniTP_{6} is quite sharp A 137.5 MHz on the i.f. output should show an increase in noise when the chain is adjusted correctly.
In the absence of a suitable signal generator, a u.h.f. television tuner can oscillator in the region of channel 68, as seen on another television set, and extracting the oscillator output Suffichent level of second harmonic frequency, is available for tuning the rf. amplifier and checking the converter local oscillator chain. Another increas in noise at the i.f. should be detected when the r.f. amplifier is tuned
test points measured on the protl the These should be compared with those obtained during the adjustment procedure. The collector currents of the 10 mA .

h) antenna assembly (without the dish) should then be connected to the used to feed the dish will eventually be used to feed the dish. Once the collector
current has been set to 7 mA the

[^6] In

pre-amp can be adjusted either for maximum noise at i.f. or by using the the antenna. When tuned, the system should be very sensitive to the signal generator output from several feet away. correct position. This of course depends on the user's location and can be obtained from the satellite position. From southern England its position is.

ue south at an elevation of an unobstructed view of the sky in this direction and a small amount of directional adjustment must be possible. The antenna assembly should the dipole horizontally polarised. The system can then be switched on.
Although transmissions are quite regular, he satelie is not on all the time and the schedule is subject to

Table 1

$\begin{aligned} & \text { Test } \\ & \text { point } \end{aligned}$	Oscticor	Oscilloter
,	0.50	0.66
2	0.47	0.39
3	0.21	0.00
4	0.48	0.00
5	-1.97	0.00
6	0.08	0.71

here is the new dynamic range

Two leading names in electronics - Wayne Kerr and Radford - have merged their expertise to provide a comprehensive new range of Audio Test Instruments. The Wayne Kerr Radford range includes distortion measuring sets, frequency response analysers, digital display stores, low distortion oscillators, audio noise meters and high sensitivity voltmeters.
change, so some period of monitorin may be necessary before a signal is heard. The signal may be recognised by the switching-on tone and the characteristic throbbing 2.4 kHz subcarrier at line rate (see picture
characteristics). Once a signal has been characteristics). Once a signam can be re-adjusted for maximum signal.
References
References

1. Vollhardt, D., Mixer and pre-amplifier 1. Vollhardt, D., Mixer and pre-amplifier
noise, V.h.f. Communications, Winter 1976. (To be continued)

continued from page 59

the 'stylus' actually consists of a block of sapphire with a flat base which rides on the surface with very little wear. The trailing edge of the stylus is plated with a thin conductor which, with the plates of a capacitor. The capacitance of this system varies as the dielectric constant changes, with the presence or absence of a pit.
The stylus is mounted on quite a long (approx. 2.5 mm) cantilever which is
driven by motors along its axis an laterally across the disc. These smal ervo motors compensate for mino tracking errors and correct for timebase errors that might arise due to disc fluta pick-up arm which itself traverse across the disc. Random access and, fo video, stop or slow motion is readily provided by the addition of a separat acess unit.
synchronised f.m. carrier with a puls code modulation decoded by a separat unit. Quantisation is a 14 bit non-linear process with
44.056 kHz .
A p.c.m. adaptor provides for audio playback, providing stereo (or, with reduced playing time, more channels) with an audio bandwidth of 1 Hz to total harmonic distortion of less than 0.05% and a dynamic range greater than 90 dB .
Aspects of the Sony digital audio dis system will be pub
tion of this report.
his is good news for all professional audio users, - for recording studios, radio \& TV broadcast stations, laboratories, service workshops, film sound \& audio-visual engineers,
micians \& producers and audio equipment manulacturers.
Wherever rapid, accurate and high-sensitivity audio measurements are vital this new combination is without equal.

Wayne Kerr Radford The dynamic range

Wilmot Breeden Electrontce Limited - Durban Road Bognor Regis West Sussex • PO22 9RL-England Phone Bognor (02433) 25811 - Telex 861620

When edifing a message it helps to see what you're doing....

 does just thatThe operator can prepare messages on the VDU which acts as 'a window into the electronic memory' of the B315 ASR teleprinter. Messages can be altered instantly by deleting or inserting words or even whole paragraphs and the text re-justified to avoid broken words at the touch of a button.
The VDU can be used to prepare messages whilst previously recorded messages are sent to line, saving valuable time. The VDU can be used even when an incoming message is being received on the in-built printer.

- Microprocessor control
- High quality dot matrix printout. - Multicopy on standard paper - Speeds up to 30 cps.
- 8000 character memory. - Full word editing capability. - Telex or Privare Circuit operation.

Transtel Communications Limited Mill Street, Slough, Berkshire SL25 5DD, England

Putting an arrow on TV

Design and construction of a movable pointer for positioning on a television screen

The arrow used by television
broadcasters as a pointer on monito screens was thought to be useful in
closed-circuit television. In lecturing example when the camera is connected to a microscope objects of interest can easily be indicated. It has proved ideal in And with the advent of home video recording this device could be a handy addition to the camera
A TELEVISION PICTURE is generated by an electron beam scanning across ray tube in a zig-zag fashion from top to bottom to give a raster. To build up a picture on the screen the brightness of the trace must be varied and the receiver raster must be in synchronism
with the picture source. To achieve this, line and frame sync pulses are produced from the picture source at the end of each line and frame. These sync pulses are used to synchronize the arrow generator to the picture source with
which it is mixed. They can be obtained from a simple test circuit; described at the end of this article. Monostable circuits, triggered from the sync pulses, are used to control the will appear, Fig. 1. The arrow pattern is produced by a character generator.
The first frame sync pulse triggers the vertical monostable delay; when the correct vertical position is reached on the scan, the delay is enabled, triggered by the next line sync pulse, at the end of which the

g. 1. Monostable circuits triggered position.

Fig. 2. Character generator uses data selector i.c. instead of shift register so
that arrow quadrant can be changed by simply switching inverters.

lock is started. The first line of the arrow appears at the video output. The clock is then stopped until the same point on the next line when it is started and the second line of the arrow pro he whole arrow has been produced. The horizontal delay is then inhibited until the same process recurs on the next frame.
Character generator
The video output is produced by looking in turn at each one of the eight data inputs using a SN74151 eight-to-one lin data selector, Fig. 2. The data line selected is controlled by a three-bit解 tor provided by a counter olumn count and so the input lines ar canned sequentially. If, for example, logical 1 was on input 3 and the rest of the inputs were at logical 0 all the time, the trace would brighten at column 3 on displayed.
The pattern to be generated must be produced a row at a time on the inputs hewn in Fig 3. It can be split up into

three separate parts - the diagonal line between the corners, a vertical line in the lower half of column 7, and a
horizontal line in the right-hand half of row 7.
To generate á diagonal between the corners, it is necessary to produce a logical 1 on input 0 during row 0 , with a logical 0 on all the other inputs. Simi-
larly on row 1 the logical 1 should then be shifted to input 1 and so on, until row 7 when the logical 1 will be on input 7. This is done by counting the number of rows on a binary counter, decoding to the input of the data selector.
The vertical line in the lower half of column 7 requires that a logical 1 is at input 7 during rows $4,5,6 \& 7$. This is achieved by connecting the most counter to input 7 .
Finally, the horizontal line in the right-hand half of row 7 is achieved by placing a logical 1 on inputs 4,5 \& 6 during row 7, with OR gates. Thus an as in Fig. 3 .
If the data selector is scanned in reverse order, the arrow would be pointing "down left". All that has to be done is to avert each of the outputs from count is inverted the arrow points "up right". Finally, if both circuits are in verted the arrow points "up left". This flexibility simply using inverters was output device instead of a parallel-in serial-out shift register, usually used in character generator circuits.

Flip-flops

Two cross-coupled NOR gates as edge-triggered RS flip-flops inhibit the horizontal delay monostable and the clock. Assume Q, R and S are at 0 and $\mathrm{Q}=1$. If a 1 is applied momentarily to S nothing happens. However, if a

The generated arrow as it appears on
the television screen the television screen

Fig. 3. Diagonal is generated by counting the number of rows on a
binary counter, decoding the count into decimal, and applying to the data selector

Fig. 4. Monostable acts as a negative edge-triggered RS flip-flop. R again goes to 1 nothing happens. If a 1 is now placed momentarily on S the circuit flops back into its previous state The transistors on the inputs are normally on due to the current supplied to putting a 0 on the input of the gates. If the potential of the other end of the capacitor goes from low to high, nothing happens but if it goes from high to low the base of the transistor follows it
to a negative potential. Subsequently, the base potential rises as the capacitor charges, and on reaching $V_{b e}$ the transistor turns on again. During the time the transistor has been off the gate on the collector of the transistor are not needed. Thus the circuit in Fig. 4 acts as a negative edge-triggered RS slip-flop. The clock must always stop in one
state. When started it has to produce its state. When started it has to produce its
first pulse a fixed time after the start command. Therefore a free-running oscillator whose output is gated is not suitable. The long-term stability is not important however as the oscillator is stopped after about eight cycles, and
the complete arrow is generated in 64 cycles, so that any long-term drift only shows up as an imperceptible change in the width of the arrow. I found that the circuit using NAND gates in Fig. 5 works well but the exact value of C
depends on many factors and is best depends on many factors and adjusted on test. The oscillator is inhibited by placing a 0 on the unused inputs and stops with the output poten tial high.

Complete circuit

In the complete circuit for a "down ight" pointing arrow, shown in Fig. 6 he frame sync pulses fire the monostable IC_{1}, its Q output immediately goes high and after the set time determined by R_{12}, goes low. This triggers flip-flop 1 and puts 1 on pins 2 \& 3 of $I C_{2}$ monost able. This allows IC_{2} to be fired on the next line sync pulse, and after a time
determined by R_{13} its Q output goes low and fires flip-flop 2. The oscillator then starts, the data selector is enabled, and the oscillator feeds the column count C_{10} which scans the input of the da pin 11, falls to 0 and resets flip-flop 2. This stops the oscillator and clocks the row counter on one. (In practice, the row counter is preceded by a divide-by arrow is repeated four times.) The next line sync pulse triggers IC_{2} and row 2 is scanned. When all of the rows have been produced the negative edge of the most significant bit of the row counter is inhibited from firing until the nex frame.
The aspect ratio of the arrow, that is how stretched out or compressed it is, is determined by the frequency of the count is clocked on. Clock frequency is this controls the width of the arrow. The lines of raster scan per row counter increment. In this circuit it is four, but it can be reduced to two by connecting pin
14 on IC ${ }_{3}$ to pin 14 on IC 5 . This produces an arrow half as high and C_{11} will have to be adjusted to get the correct aspect ratio.
Tran
Transistor Tr_{1} needs to be a fast switching transistor, for if there is a

Fig. 5. Long-term drift produce imperceptible change in arrow width. Adjust capacitor C on test.

Fig. 6. Arrow direction is altered by using spare gates in $I C_{9}$ and $I C_{7}$ as inverters in each of three connections across broken lines A or B - see Figs. delay here an output of column 0 will be
 from the data selector. Due to the nonsynchronous counting of the SN7493 column count certain spurious outputs
can occur taking the form of narrow can occur taking the form of narrow
lines in the arrow pattern. This could be overcome by using synchronous counters, but they are expensive. As the spikes are very sharp they can be simply the pattern by placing capacitors C_{8} and C_{9} across the output. The data selector has an output and an inverted output, and by taking one of these the result is either a black arrow on a white backbackground.

The arrow can be made to point in any direction without any additional i.cs by using the spare gates in IC_{9} and IC $_{7}$ as invertors in each of the three
connections crossing the broken lines labelled A or B. For an "up right" arrow invert at A; for a "down left" invert at B. If an "up left" pointing arrow is required invert at A and swap over the following connections on $1 C_{5}$
2 and 14,1 and 15 .

Pointer control
To switch the arrow in two or four directions extra circuitry will have to be added at point A or B or both. The most
elegant way of doing this is to use the elegant way of doing this two SN74H87
circuit in Fig. 7 employing two SN 4 -bit true/complement circuits. A

WiRELESS WORLD, JUNE 1979

heaper way is shown in Fig. 8, using an SN7400 in each line to be inverted. The ontrol lines C and C can be generated by the spare gates in the rest of th circuit.
The position controls can be left a two potentiometers, but this requires operate. Perhaps the simplest and cheapest method of "joystick" con struction is shown in Fig. 9. This in together at right angles. The body of one potentiometer is attached to a base via a mounting bracket, and the body o the other is attached to the joystick control. The potentiometers are then
wired so that the direction of movemen on the joystick corresponds to the direction of movement on the television screen. For full coverage of the screen range of 25 and $50 \mathrm{k} \Omega$ respectively; as the full track of the potentiometers is no used, the values must be 50 k and $100 \mathrm{k} \Omega$

Flashing arrow

If the delay on IC_{1} is greater than the fame period then the arrow will only flashing effect that might be desirable in certain applications. Flashing at dif ferent rates can be achieved by counting the frame sync pulses and enabling Fig. 10: This is done by connecting the most significant bit to the inhibit of the monostable. If pins 3 \& 4 of IC_{1} are connected to ground then the modifi cation in Fig. 10 produces an arrow on If the interval is made larger by using more counting stages, a "subliminal" effect may be achieved where attention is drawn to where the arrow is pointing 'without the arrow being consciously further experiment before any rate of flashing can be suggested. The period of IC_{1} cannot be extended to achieve this as the inaccuracies in timing pro

Test circuit

This arrow generator is essentially part of a larger system that provides sync

Fig. 11. Simple sync generator and mixer for testing.
pulses and mixes the arrow with other material. It is useful for test purposes to have a simple sync generator and a
video/sync mixer to produce a composite video signal of the arrow only The simple circuit used in the development of this arrow generator is shown oscilators having duty cycles similar to that of the line and frame sync pulses. These oscillators are not locked together and so a random interlace occurs. An SN7400 mixes these pulses and adds them to any digital video
information. When the output is ter-
minated in 75Ω there is just under a volt of composite video signal which is sufficient to drive most monitors. The
oscillator frequencies can be adjusted by locking the monitor onto a TV transmission and then connecting it to
the circuit in Fig. 11. The two preset potentiometers are adjusted until lock is obtained.
The layout appears to be non-critical, and the prototype was made on a piece the arrow direction contron there are a lot of i.cs, attention must be paid to decoupling. If the spare gates on C_{9} are used it must be decoupled as otherwise it might not oscillate reliably,

More compatibility problems

for cassettes

It is now two years since Philips announced its intention to show a cassette containing magnetic iron or chromium oxide, at the than Berlin Funkaustellung. But shortly before the Berlin show Philips curtly told all those
journalists who had by then written at hosh journalists who had by then written at length
about the impending launch that it was, after all, off. As a result of the late date of this
about-ace some magzines about-face, some magazines carried lengthy
reports on the new tape, followed by a couple reports on the new tape, followed by a couple
of hastily inserted lines effectively advising readers to ignore everything they had just read. Since then there has been a deafening
silence from Eindhoven on the metal tape slince and at a recent Eindhoven press conference a company spokesman gallantly tried to re-write history by denying that it had ever
talked of a Berlin launch in 1977. All that we know for sure is that commercial production of the tape, two years ago, ran into "problems, probaby from turning to non-magnetic rust. Alternatively Philips may have found to its cost that of exploding.
of exploding.
While Philips has been solving its produc-
tion prest tion problems a string of competitors, in-
cluding BASF, 3 M and TDK have also devecluding BASF, 3M and TDK have also deve-
loped iron powder tapes. Coercivity hovers around 1000 oersted ($10^{6} / 4 \pi \mathrm{~A} / \mathrm{m}$) but there
is as yet no standardization. Philips has settled for 950 oersted $(75,000 \mathrm{~A} / \mathrm{m})$ but 3 M
and TDK have talked of coercies oersted and above. Thus the poor longsuffering cassette-using consumer is faced with yet another problem. Not only will metal powder tape (pushing up the high frequency end to uncomfortable peaks) but a machine biased for one metal tape may well perhaps, just once, the companies can get together before it is too late and agree on a
one coercivity, one bias standard, right from one coorcivity, one bias st
the word go. We shall see.
Perhaps the most worrying aspect of the new metal powder tapes, which at' $£ 5$ for a
C90 will cost around four times the price of c90 will cost around four times the price of
an ordinary cassette of similar length, is that they look generally similar to conventional oxide cassettes. It it ithus a forgone conclu-
sion that a customer asking in a sho for the sion that a a customer asking in a shop for the
"best tape" is likely in the future to be sold an iron powder tape which will actually produce far worse results on a conventional machine.
than an oxide cassette at quarter the price. In. inan an oxide cassette at quarter the price. In
its press release Philips claimed "good results" from metal tape on conventional recorders set for chromium tape bias. When said it depended on what one meant by "good results".

Adrian Hope

Converting between analogue and digital quantities - 2
 Digital to analogue converters

by G. B. Clayton, B.Sc: "Liverpool Polytechnic

In the discussion of conversion principles presented so far the function of a d.a.c. has been established as that of providing a digitally coded input signal The basic circuit principles underlying the implementation of this function are not difficult to understand and can be readily manner.

CONNECT UP, or simply consider, the circuit arrangement tgiven in Fig. 3 . It and a set of binary weighted resistors each resistor having an associated switch. Switch positions are taken as
representing values of binary inputs. If a switch is in the state designated $1, V_{\text {ref }}$ causes a current to flow through the resistor associated with that switch. The sum of all switched current contributions is the short circuit output
current of the network; it can be measured by a low-resistance milliameter to give an analogue reading corresponding to the binary-coded digital input - the switch positions.
tribution. $V_{\text {ref }} / R$ to the makes a conoutput current, bit 2 tontributes $V_{\text {ref }} / 2 R$ and bit 3 , which in Fig. 3 is the l.s.b., makes a contributes $V_{\text {ref }} / 4 R$. Using $V_{\text {ref }}=10 \mathrm{~V}$ and $\mathrm{R}=5 \mathrm{k} \Omega \mathrm{makes}$ the 1.s.b.
coftribution $10 / 20=0.5 \mathrm{~mA}$, and with all bits 'on' (binary input 111), the shortcircuit output current is 3.5 mA ($7 / 3$ full scale where normalized full scale is
4 mA). 4 mA).
A digital-to-analogue conversion involving a digital input word with more
than three bits can be implemented using the principles outlined above by simply adding an extra switch and resistor for each extra bit. Thus an n-bit, binary-weighted resistors values $R, 2 R$, $4 R \ldots 2^{n-1} R$. The expression for the short-circuit output current developed by such a network is
$\mathrm{I}_{\text {o(sc) }}=2 V_{\text {ref }} \mathrm{R}\left[x_{1} 2^{-1}+x_{2} 2^{-2}+\right.$
where $x_{\mathrm{i}}=1$ if S_{i} is switched to the high state,
or $x_{i}=0$ if S_{i} is switched to the low state. ques for a variety of possible techniques for reading the analogue output resistor network. An operational

Fig. 3. Digital to analogue conversion with binary weighted resistors.
Fig. 4. Read out of analogue output signal.

$v_{0}=\frac{2^{n}}{2^{n}-1} \cdot v_{\text {ref }}\left[x_{1} 1^{-1}+\cdots+x_{n} 2^{-i}\right]$

$b_{0}=\frac{2^{n}}{2^{n}-1} \cdot v_{\text {ret }} \frac{R_{L}}{R^{+}+R_{L}}\left[x_{1} 1^{-1}+\cdots+x_{n} 2^{-n}\right]$

WIRELESS WORLD, JUNE 1979
where $R_{\text {o }}$ is the effective output resist esistance of all the weighting resistors in parallel.
$R_{0}=\frac{2^{n-1}}{2^{n}-1} \cdot R \simeq \frac{R}{2}$ for $n>4$
Note that when the resistor network is loaded any change in load inevitably influences the analogue output signal. In concept, weighted-resistor net direct method of performing a d.-to-a. conversion. However, when many bits of digital information are involved, the weighted resistor network has the disadvantage of requiring a large range of would require resistor values in the range $2^{9}: 1$, (512:1) and the m.s.b. resistor would need to be of very close tolerance it were not to introduce errors as big s the ls.b. value. In a ten-bit con

Fig. 5. R-2R ladder network gives binary bit weighting.
Fig. 6. Thevenin equivalents for each separate bit in Fig. 5

$2 R=R$ and at point B is $R+R$ (in in parallel with $2 R$ namely $2 R / 2 R=R$ and so on, regardless of the numbēr of stages.
The output voltage produced by the network can be derived, using the principle of superposition, as the sum of the
effects of the individual bits acting separately. The effect of each bit at the output is most readily found by deriving its Thévenin equivalent; the process is shown in Fing. bit switches except that for the bit under consideration are imagined in the 0 state. It can be seen that the m.s.b. (bit one) makes a contribution $V_{\text {ref }} / 2$ to the open circuit output a three $V_{\text {ref }} / 8$. In the more general case of an $R-2 R$ network with n stages used for an n-bit d.-to-a. conversion, the expression for $V_{o(o)}=V_{\text {ref }}\left[x_{1} 2^{-1}+x_{2} 2^{2}+\ldots+x_{n} 2^{-n}\right]$. The short circuit output current is:
$I_{\text {osc })}=\left(V_{\text {ref }} / R\right)\left[x_{1} 2^{-1}+x_{2} 2^{-2}\right.$
$\left.+x_{n} 2^{-n}\right]$
The output voltage of the network where loaded by a resistor R_{L} is
$V_{o}=V_{\text {ref }} \frac{R_{1}}{R+R_{\mathrm{L}}}$
$\left[x_{1} 2^{-1}+x_{2} 2^{-2}+\ldots+x_{n} 2^{-n}\right]$
If the analogue output voltage must be vailable at a low output impedance an shown previously in Figs. 4(a) and 4(b) R-2R ladder networks, because o heir symmetry, can be used in a variety rrangement shown in Fig 7 the reference input and output lines of Fig. are interchanged: a change of switc tate in Fig. 7 causes very little chang hort-circuit output current produce by the simple three-bit arrangement is determined by the relationship
$\left.I_{o(s)}\right)=I_{\text {ref }}\left[x_{1} 2^{-2}+x_{2} 2^{2}+x_{3} 2^{-3}\right]$
The R-2R network divides the input urrent $I_{\text {ref }}=V_{\text {ref }} / R$ into binarily-related bit-current components which the switches steer to either the output line ment equal in value to the l.s.b. curren flows through the terminating 2 R resis or to earth. The number of bits can be

increased by simply adding extra sections to the R-2R ladder.
The foregoing treatment of resistor weighting networks has by no means covered all the techniques which are
employed in the practical converters. employed in the practical converters.
The R-2R ladder is probably the most frequently used network for bit weighting but an alternative approach which is adopted in some converters is to use binary-weighted resistor quads $(R, 2 R$,
$4 R, 8 R)$ with appropriate attenuation $4 R, 8 R)$ with appropriate attenuation
between the quads. The quad approach allows the proper relative quad weighting for b.c.d. conversion to be obtained by adjustment of this inter-quad attenuation. A circuit configuration illustquads is given in Fig. 8.
The subject of resistor weighting is not pursued further since from the d.a.c. user's point of view, a general knowledge of the basic ideas underlying the
subject is all that is required. Commercially available d.a.c.s contain resistor weighting networks, but the devices can be used effectively without a detailed knowledge of the design of these networks. Practical d.a.c.s do not, of
course, use mechanical switches; they employ electronic switches which are activated in response to the high or low voltage levels which are applied to their logic inputs. Current switching techniques of Fig. 7 (because they involved very little change in switch voltage), provide faster operation than the voltage switching of Fig. 4. Bipolar tranconverters but the detailed circuitry involved in such switching arrangements need not concern the d.a.c. user.

Practical d.a.cs

A wide variety of d.a.cs are available in form, ranging from modest, six-bit converters to very accurate 16 bit converters. Available devices differ in speed; accuracy and the range of performance options which they provide (types of
digital code, analogue polarity, etc.) Some devices include their own built-in reference voltage, whilst in others the reference voltage must be externally connected external reference voltage can be varied are referred to as multiplying

$$
I_{0}=\frac{v_{\text {ref }}}{R}\left[x_{1} 2^{-1}+x_{2} 2^{-2}+x_{3} z^{-3}\right]
$$

Fig. 7. R-2R network in current
switching configuration.
d.a.cs, since in these devices the analogue output signal is proportional to the
product of the variable reference voltage and the input digital number. Some devices produce an output current which, if required, can be converted to a low output-impedance voltage by
means of an externally-connected means of an externally-connected clude an internal operational amplifier which is used to perform this function. The output operational amplifier in a converter, if is used, haciably sh

Performance of a d.a.c.

An experimental learning exercise on d.a.cs is best performed with a device which allows a range of different operating conditions and thereby permits the experimenter to more formance. Precision Monolithic's multiplying d. to a. converter, type DAC 08 , is chosen for discussion here; there are of course other inexpensive integrated
circuit d.a.cs available e circuit d.a.cs available, e.g. Motorola,
MC1408L-8, Analog Devices AD7520, and if you decide to use one of these alternative devices you will need to first study its data sheet in detail.

Fig. 8. 8-bit d-to-a converter using two equal resistance quads with quad.

The DAC08 is an eight-bit integrated-circuit, multiplying d.a.c. It perating conditions and is inexpensive. In Fig. 9, which is extracted from the manufacturers' data sheet, the device pin connections and simplified equivalent circuit are shown. Pins 5 to 12 are the l.s.b. at pin 12. The logic threshold can be adjusted by means of a voltage applied to the logic threshold control, pin 1 , this feature enabling the device to be interfaced with all the popular logic responds to t.t.l. logic levels.
An internal operational amplifier, together with an external reference voltage and resistor, is used to set the
value of a reference current. The curvalue of a reference current. The curcurrents by an R-2R ladder network and the bit currents are supplied to curren switching transistors. The simplified equivalent circuit of Fig. 9 does no
show the detailed switching circuitry nor does it indicate the technique use to obtain correct scaling of the 1.s.b current increment.
The reference amplifier connections for positive, negative and bipolar Transistor Tr_{1} and the current sink bit transistors $\mathrm{Tr}_{1}, \mathrm{Tr}_{2}, \mathrm{Tr}_{3} \ldots \mathrm{Tr}_{8}$, share a common base line driven by the output voltage of the integral reference
amplifier. Transistor collector and mplifter currents are approximately equal and the voltage $I_{\text {ref }} \cdot R$ which app ears across the emitter resistor of Tr^{1} drives the R-2R network (compare wit Fig.7)

WIRELESS WORLD, JUNE 1979

Fig. 9. Precision monolithic DAC08 pin connections and simplified functional

Fig. 10. Reference amplifier connections (DAC08).

Feedback round the refer amplifier is returned to its non inverting input terminal, this connec tion giving negative feedback becaus of the signal phase inversion between Assuming the reference amplifier be haves like an ideal operationa amplifier, all current arriving at pin 14 is made to flow as the collector current o 15 are forced to equality. The negative reference connection of Fig. 10(b) in effect applies series negative feedback to the reference amplifier and is thu haracterized by a high input imped ipolar reference inputs are obtained by d.c. offsetting the current into pin 14 and are shown in Figs. 10(c) and 10(d) values used must ensure that the cur ent direction is always into pin 14. In miltiplier applications when an altern capacitor, C_{c}, must be connected bet ween pin 16 and pin 3 (the negative supply) in order to frequency compen aried for $C_{\text {de }}$ apends upen value used for $R_{\text {ret }}$; the minimum recom mended values are $15 \mathrm{pF}, 37 \mathrm{pF}$ and 7 pF for $R_{\text {ref }}$ values $1 \mathrm{k} \Omega, 2 \mathrm{k} \Omega$ and $5 \mathrm{k} \Omega$ espectively.
A feature of the DAC08, not com monly found in other devices, is that rent I_{o} at pin 4 and the current I_{o} at pin 2 , into the output terminals. Bit currents, instead of being switched between a single output line and earth are
switched between the $I_{\text {a }}$ and \bar{I} lines. A bit current is switched to the I_{0} line when its input logic terminal is in the state 1 and to the \bar{I}_{o} line when the logic terminal has the state 0 , Output currents have values which $I_{o}=I_{\text {ref }}\left[x_{1} 2^{-1}+x_{2} 2^{-2}+\right.$
and
$\bar{I}_{\mathrm{o}}=I_{\text {ref }}\left[\bar{x}_{1} 2^{-1}+\bar{x}_{2} 2^{-2}+\right.$
$\left.+\bar{x}_{8} 2^{-8}\right]$
Note that $I_{\mathrm{o}}+\bar{I}_{\mathrm{o}}=I_{\mathrm{FS}}$ where I_{FS} is the actual full scale output current deter $I_{\mathrm{FS}}=255 / 256 I_{\text {ref }}$
Both output currents can be used simultaneously, but if one output is not required it must be connected to earth or to a current point capable of supplying the current I_{FS}. Both outputs can be converted into voltage signals by
simply using an external load resistor or, if a low output impedance voltage signal is required, an operational amplifier can be used as a current to voltage converter. The outputs have a wide voltage compliance, which is the
maximum voltage which can be applied to an output terminal without changing the value of the output current.
As an experimental familiarisation the d.a.c. logic inputs to the parallel
utputs of an eight-bit binary counter; 1. Note, in Fig. 11 , that the 12 V in positive supply line is used as the d.a.c. reference voltage; in a practical application eparate reference voltage would no mally be used for greater accuracy Senient value (say 100 kHz), and observe the analogue output signal (at pin 4) with an oscilloscope. The traces given in ig. 12 show you what you should ex pect to see.
.a.c. performany other aspects of the gate. Connect a second you can inves or between the \bar{I} second $2.2 \mathrm{k} k \Omega$ resis arth and simultaneously observe both earth and simultaneously observe both reference current (by changing the value of R) but do not exceed $I_{\text {ref }}=3 \mathrm{~mA}$ Try the effect of setting the counters in he count down mode by applying gical 1 insead of 0 to the counter pin

Offset binary operation
in some applications d.a.c.s are required o produce a bipolar output signal, which is often accomplished by offsetn amount equal to half the unipolar output of the d.a.c. The conversion relationship between the digital input word and the analogue output is then he offset binary code (See Table 6). The with an external operational amplifier, allow a symmetrical offset binary operation. A suitable circuit arrang ent is given in Fig. 13
The gerational amplifier is confi ured as a current-different-to-voltag converter and, assuming ideal action, its output voltage is determined by the elationship:
$V_{0}=\left[I_{0}-\bar{I}_{0}\right] R_{2}$
But $\bar{I}_{0}=I_{I_{s}}-I_{0}$
Thus $V_{0}=\left[2 I_{0}-I_{\text {ts }}\right] R_{2}$
(2)
where $I_{s}=255 / 256 I_{\text {ref }}$ and I_{o} is deter mined by Equation (1)
be used to obtain the Table 6. Note that which is shown in tates are symmetrical analogue output. there is no value of the digital input for which the analogue output is identically zero.

Vertical: 0.2 .2 I div
Horizontal : 20 Hs/div
vertical: iv/div

POWER SUPPLIES
A.C. in/d.c. stabilised out. Sub-units D.C. in/d.c. stabilised out
eries/linear regulator. Low cost 0.E.M Dp. amp. powering. Encapsula
High efficiency/small size switching Constant voltage. Constant current Outputs from 0 to $50 \mathrm{~V}, 0$ to 60 A standards.
Sub-bench (variable unmetered)
Low cost utility bench units
High stability bench units
Constant voltage/current with or without automatic crossover. H.T.
Rack mounting
S.C.R. chopped

Fan cooled
Outputs up to 100A from standard
Battery standby systems (to order)
Specials and custom design work

Signal sources
Sine-square oscillators
Function generators
Pulse generators
Digital signal generators
R.F. signal generators

Synthesized signal generators
Sweep generators
ANALOGUE MEASURING
instruments
A.C./d.c. millivoltmeters
R.F. millivoltmete

Phasemeter
Automatic modulation meter

DIGITAL MEASURING INSTRUMENTS Digital multimeters. Digital thermometers Digital frequency meters. Digital timers Modular high speed digital event counters

There's more
NDUSTRIAL CONTROL
Alarm annunciator modules and systems Trip amplifiers. Control panels and systems anel meters

OSCILLOSCOPES

12MHz bandwidth
OMHz bandwid
Dual trace
ong persistence tube versions Rack mounting versions
robes
Carrying cases/protector muffs

AGENCIES

Avo

Avometer instruments and accessories Avo component testers and accessories

MEGGER

Megger' testers. Insulation testers Earth testers, etc.

SULLIVAN

Precision instruments
Measurement standard
TANDBERG
Compûter peripherals. Formatters. Systems Digital tape transport.Video displayterminals 4 Channel F.M. instrumentation tape recorder Cartridge data recorder

DATA PRECISION

$2 \frac{1}{1}$ 51 digital multimetes
Low cost models. Portables. Bench models
Systems compatible models

NSTRUMENTS
Potentiometric pen recorders
Single or two pen models
nput modules to suit measurement arameter - microvolts, milivolts,.volts, Y a.c., cur Pr, Hequ A A and sizes With or without timebase
Consumables for above - paper, pens, etc. nstrumentation tape recorders ata recorders (cartridge tape) Digital reel to reel

Counter/timers. Frequency meters

FARNELL INSTRUMENTS LIMITED
SANDBECK WAY • WETHERBY • WEST YORKSHIRE LS 22 4DH TEL. 0937-63541 or 01-864 7433 • TELEX 557294 FARIST G

Philips present abiased guide to cassettes.

Naturally we feel that our cassette tapes are the best. After all, we invented the compact cassette. But this has not led to complacency. There are now five Philips cassettes available from your audio dealer, and
shows which one is best suited to each selected machine.

But don't take our word for it. Try a Philips cassette in your machine, and draw your own conclusions.

Low noise tape.
Balanced output
Balanced outp
Bd response

Simply years ahead

\section*{| RHILIPS | |
| ---: | ---: |
| SUPERFERAO | |
| 0008 | |
| 0008 | G600 |}

High output. Low
nacisese. Suitible for
settinges. with low bias

$\Delta \begin{gathered}\text { High output. Low } \\ \text { noise. Suitable for }\end{gathered}$ machines with higher
bias settings.

MICROELECTRONICS REVOLUTION
The editiorial in your April issue sets up the
 lechnology performing what could be de scribed as a "Custer's last stand" Itake issue on several points. Initially the
government intends to put up some $£ 70$ million over the next five years. Surely we Should not knock this goladen opportunity bu
attempt to caitalise on it for the benefit of altempt to capitalise on it or onsider the microcomer quan-
all Tively titatively as another number crunching equivalent of its larger predecessor is
narrow viewpoint. It shows a lack of understanding of the concept. To those of us who have worked on software development I say hat for the first time we can write high- and plexity on machines costing less than $£ 2,000$. his including editors, assemblers and the umber of sof ware tion in the cost of software at least in relative erms.
At present there is considerable interest in he application of this new technology in
industry, particularly in labour intensive environments. To drop loaded statements about labour retations and propagana can
do nothing but harm to this very sensitive problem area. Equally it is no reason to run
away from the issue. It has been said else way from the issue. Ihas bee where that at first man used his muscle po-
wer to earn a living. With the advent of the dustrial Revolution steam power replaced his, so that man had only to control his new source of energy to accomplish his work
Perhaps the micro revolution will see a simiar change in the working environment here man is no loner employed to contro he machine power. In the industry of the us, provided, that is, that we are not left be ind in technology. Surely of far greater
ignificance will be the re-distribution of wealth from our industries - a problem which is more soluble when viewed from J. Frost

University of Warwick Business School Coventry

AN OVERSIGHT IN
COSMOLOGY?
Answering the question "Has there been an oversight?" raised by A. Jones in your April ndomly phased radiation covering a wide waveband, such as that of light reaching us fom stars and the observable limits of th

Her. Heinrich William Olbers in 1826 was jus fiably puzzled not to find the night sky the only ade paradox.
The electric or magnetic field will of course romagnetic power proportional to E squared ormagnetic power proportional to E square value at any time so cannot cancel in sum ation.

The radius of the Universe, suggested by Hubbles' constant which relates red shift to
distance of the light source, is of the order of 13 thousand million or 10^{10} light years, and V B. Hulme
Chichester
Chichester
Sussex

TELETEXT FOR

DEMOCRACY

May I suggest a use for teletext which could to democracy? It could be inispensable aid to democracy? It could be used as a public
noticeboard on which to display our questions to ministers and the ministers' replies. This would help to overcome the lack of
communication between citizen and governcommunication between citizen and governproblem by the Royal Commission on the Constitution (Kilbrandon Report 1973). Much of the report is devoted to this problem "Government (should) be exposed to the force of democratic opinion and be required
to explain the reasons for its decisions." to explain the reasons for its decisions. We the ordinary people should have the same right as MPs to ask questions of ministers. This could be done by using teletext as
an interactive system in the following way. an interactive system in the following way.
Radio, television and the press would issue regular reminders that a feedback system
existed and when we wanted to publicly ask existed, and when wastion of a minster we would send it to either Ceefax or Oracle. When several questions had been received about a particular matter they wound be
Three groups of teletext pages would be set aside for this feedback system. Group 1 would indicate the type of questions which
were being received at any particular time; group 2 would display verbatim the questions which had been put to ministers and which
were awaiting reply; and group 3 would were awaiting reply; and group 3 would
display the questions which had been asked, with the ministers' replies alongside. It is the latter which is the key to the flow of opinion; it would provide a medium for the cross-fertilisation of ideas; ; t would be an outlet for tension and would reduce the
feeling of helplessness in the face of big government; and it would go some way towards turning us from serfs to partners. To enable everyone to take part we would as Post Office windows.
I have developed this idea as a result of
what I found when I lived in Tasmania in
1974. The Chief Librarian for Tasmania, Mr
W. L. Brown, has installed in the foyer of the State Library a suggestion-box with a notice-board alongside. Suggestions from library members are received via the suggestion-box and are then typed out and
displayed on the board with Mr Brown's reply alongside.
The same principle should incidentally be
applied to every sphere of life, whether it be applied to every sphere of life, whether it be
local government, the unions, churches, companies, the civil-service, public bodies, and organisations of all kinds; with the
object of forcing the people at the top to explain their policies to customers, members and workers, and to show cause why a suggestion should not be adopted.
Because the system would pe Because the system would permit the
interaction of ideas between different levels it could perhaps be called INTRAK
(meaning "interact"). (meanin
S. Frost

Dunsyre
Lanarkshire
FAILURE OF DISTRESS SIGNALS AT SEA
since the time of the Titanic the band $410-515$
kHz has been allocated kHz has been allocated to the maritime
mobile service, and under the Convention for Safety of Life at Sea ships have been equipped with an automatic alarm receiver tuned to 500 kHz , the international distress
frequency. This is programmed to recognise a pre-arranged alarm signal emanating from another vessel and correspondingly equipped
with a battery powered 500 . with a battery powered 500 kHz transmitter
with which to send it. A better system has yet to be found.
Such a transmitter is typically of 100 watts
power, with pi-coupler feeding an antenna power, with pi-coupler feeding an antenna of
much less than quarter wavelenth being whatever 'bit of wire' that can be conveniently hung up on a given superstructure. A typical commercial transmitter currently 4 ohms to $750 \mathrm{pF}, 1.9$ ohms. The antenna is invariably brought into the radio room via a
ceramic feed-through insulator 10 or inches long and 4 or 5 inches in diameter. The aerial may have up to 8 strain insulators, made necessary by frequent changes in the direction of the wire
This arrangement
This arrangement works well enough at
the wharf where it is tested and inspected, but the sea is rough, it throws up spray, the
spray is salt, it coats the insulators, and spray is salt, it coats the insulators, and crystals may be formed. Then becomes a concentric capacitor, the outer plate formed by a sàlt water
film which at the same time acts as a resistive load in parallel, and there may be sufficient load in paraile, and there may be sufficien
shift of impedance and phase angle to take the aerial outside the tunable range of the pi-
coupler. There is a loss of aerial/pi-coupler tuned circuit Q. It has actually been observed by several marine radio officers (of whom I
am one) that under such conditions am one) that under such conditions, with
some installations, it has been impossible to 'dip' the transmitter tank on 500 kHz and therefore impossible to get any current up the wire. Transmission can be instantly
restored if one can wash the offending insurestored if one can wash the offending ins in
lators, but that cannot readily be done in severe gale conditions at sea. Last year, according to Lloyds, $£ 243$ million of tonnage
was lost, some of it just vanishing, reported was lost, some of it just vanishing, reporte I have carried out some simple experiments
with a comparable feed through insulato

and sea water, obtaining d.c. resistance of quick dip in the sea, but if a constant drizzle of sea water is aimed at the insulator, it is ase of the ship's insulator this resistive film ill not be required to dissipate any power nill not be required to dissipate any be radiated. Some vessels ar ometimese equipped with rather inefficien spray shields', seldom entirely satisfactory,
nd in some cases where insulators hrough a wall rain can wash salt from the superstructure onto the in Ifld that may be fitted.
If ny reader has had
If any reader has had any experience of this phenomenon, or can direct me to an
research which may have been done on it, would be extremely interested to hear and
would also like to know if any firm is inter ested in the design of an improved spray
shield. No thought has been given to this question for about 70 years!
ohn Wisema
London E3

MILITARY ELECTRONICS congratulations onyour editorial He deal never expected to see such sentiments expressed in a technical journal
Miracles continue to happen. Miracles continue to happen.
However, while being wholly with you Hour distaste of the application of our pro essional work we must be aware of the nd see defenceless people (our own fam and see defenceless people (our
lies? become the victims of force The real crime is that of insensitivity to had much to say about those who neglected the needs of others.
Presumably, those in the death busines are not prepared to sacrifice their caree and few will blame them. In any case, the lame is not only theirs but all who con cially (by taxation) and by their politica
$\stackrel{\text { yote. }}{\text { War is a terrible thing in whatever form }}$ also bound in all professions. Only when man is prepared to sacrifice his own needs and put defeated

Melsham Wilts

F.M. TUNER DRIFT

 olliowing your articles on the Nelson-Jone 1978 issues), I feel some readers may b found in the Mk I (varicap tuned) and which may also apply to the Mk II and probably other designs as wel The tuning औoltage is applied to pairs ofvarictaps through 1M 2 resistors on the assumption that the leakage current of the varicaps will be very small. This is normally
true - the ZC101 has a typical leakage true - the $\mathrm{ZC101}$ has a typical leakage
current of 1 Aa at $20^{\circ} \mathrm{C}$, but it has a maximum
specified value of $2 \mu \mathrm{~A}$, which would drop 2 V

ough 1M8! In my tuner, I was sufferin

 from dirt on warm-up (on a time switch in a cold house) equivalent to something like50 mV drift in tuning voltage. This could be produced by a 50 nA change in leakage current which, being a highly temperature
sensitive parameter, seems quite possible. sensitive parameter, seems quite possible. current, parallelling the $1 \mathrm{M} \Omega$ resistors with
$100 \mathrm{k} \Omega$ does seem to have done the trick. P.J. Le Riche

Haprenden
Herts The author repliek: Yes I agree, and I have
done some quick calculations which show
that a value of feed resistor down to $47 \mathrm{k} \Omega$ that a value of feed resistor down to $47 \mathrm{k} \Omega$
rather than the present value of $1 M \Omega$ is quite acceptable. The limitation of value in this downward direction is set by the need to avoid unduly loading the oscillator tuned
circuit at the h.f. end of the band. circuit at the h.f. end of the band Assuming that the capacitance total in the
circuit is around 10 pF at 108 MHz , the impedance of the tuned circuit unloaded provide a tapping at 50% so that the imped ance of such a tuned circuit at that point would be around 4 to $5 \mathrm{k} \Omega$ in an unloaded
state $(Q=200-250)$. However, the tuned state ($Q=200-250$). However, the tuned
circuit is connected in an oscillator circuit circuit thus has a ' Q ' greater than infinity in effect. Thus any loading is merely a 1 oad on
the oscillator and will only serve to lower the the oscillator and wilil only serve to lower the
oscillation level slightly unless it is so heavy as to stop the oscillator altogether. Thus a L. Nelson-Jones
"'SOFTWARE
DABBLERS
As one of Professor H. Barker's "dabblers" would like to add to the comments already
made by M.A.I. Wilson in your February issue (letters). Yes, modern technology has engineers to use single chip microcomputers and low chip-count systems. It has made it
possible for mechanical engineers to possibe for mechanical engineers to design
better systems using microprocessors. In the recent past the operational amplifiers has had a similar effect on analogue systems. Is it so
bad that mechanical engineers and others bad that mechanical engineers and others
should be able to step over the so-called should be able to step over the so-called
boundaries? Control engineers using elec trohydraulic systems have been crossing the boundaries every day. Test and developmen
engineers think nothing of using electronic engineers think nothing of using electronic
equipment for test purposes. Most modern engineers are quite familiar with computing and software in the form of BASIC or FOR
TRAN.
I agree wholeheartedly with Mr Wilson in
his call for unification of hardware and his call for unifictation of hardware and
software. The design engineer in whateve software. The design engineer, in whatever
discipine he may work, who can understand the whole of his system and know when to call in specialists to help him is just what this
country needs. What we dond country needs. What we don't want is
demarcation attitude of "who drills the holes" when the holes happen to go through metal and wood.
Extensive commercial exploitation wil
come from installation in all manner equipment. To use equipment one does no need to be a specialist in its design but only to the remainder of the design.
essor Barker belongs, the specialist often people he is teaching. Articles written in Wireless World, when they are written by the people who have made the equipment, per-
haps even classed as dabblers, often provide haps even classed as dabblers, often provide topic than ever a a specialist could.
The micropracessor revolutio
The microprocessor revolution is upon us
and Professor Barker might do well to and Professor Barker might do well to
remember what has happened to the elite in some of the revolutions of the past.
G. A. Jones
Kidderminster.

THE MILLIBEL

May I enter a private and personal plea for an hitherto unused "unit" the millibel or mB.
This little fellow is familiar decibel and represents the smallest part of a dB with which one is likely to be concerned. In its favour it can be shown to
save space and writing effort: and it also save space and writing effort; and it also
removes any ambiguity in the placing of a decimal point. I have used it myself, unof-
ficially in lab ontebooks ficially, in lab notebooks.
your attention to the current practice of giving values of resistance and capacitance without them. Thus 4.7 FF is shown as $4 \mu 7$ and 2.2Ω as 2 k 2 . It seems to me that this
economical method might usefully be extended to other electrical units in the form of
$1 \mathrm{kW5}$ for 1.5 kW or 11 mA 3 for 11.3 mA . $1 \mathrm{kW5}$ for 1.5 kW or 11 mA 3 for 11.3 mA . Where power or current is clearly meant the W or A
can be omitted, as Ω or F are for resistance or capacitance.
As a by-product this stifles any con-
troversy over whether one should write 4.7, troversy 4.7 over whe
Philip D. . . Marks
Bourne End
Bucks
Bucks

\square

RELATIVITY AND
TIME SIGNAIS
All of us would like to know more about the workings of the universe, hence our interest
in relativity, whose object is to unravel those in reatinsty, Rhose object is to unravel those contradictions and its current protagonists
seem to echo A. Huston the 1930 who seem to echo . A. Houston in in inatvisable to devote attention to
 1978 and April 1979
this "inadyisabily"
this "inadvisability",
A recent television documentary in the
USA quoted experimental evidence for the A recent television documentary in the
USA quoted experimental evidence for the
slowing of light in the vicinity of the sun. The slowing of light in the vicinity of the sun. The
scientists on the programme hastened to scientists on the programme hastened to
save relativity by claiming that an observer on the sun would find the same light moving at its (full) velocity c. I wonder where this
leaves the statement of Dr Griffiths (Deleaves the statement of Dr Griffiths (De-
cember 1978 letters) that "the velocity of light is the same for all observers." (I might point out in my pinion, are necessarily equias nor, in my opinion, are necessarily equi-
valent to the words used by Einstein in his famous Principle 2.)
Whether
Whether any experiment has ever been performed to measure the speed at which
light from a source S approaches light from a source S approaches an object
moving at velocity v towards S I do not

WIRELESS WORLD. JUNE 197
know. If not, I am impressed by Dr Griffith
faith. In his original paper, Einstein, in de ducing the Lorentz quotations from his pos tulates and his synchronisation procedure used the commonsense relative velocity of
$+\nu$ for Dr Griffiths' example and, wonder of wonders, came up with a different formula for compounding two velocities. The logic is
equivalent to, "If $A=B$, if follows that A is. not equal to B.
R. J. Diamond
Copartment of Mathematic
Los Angeles, USA
Lalif

FERRITE ROD AERIALS length of ferrite rod aerials in your Decembe issue is sub-titled "A topic that has receive almost no treatment in the literature". This ray be true of recent years but there is ather full treatment in the reference given design equations are entirely consistent wit However, an expression for effective aeria height which depends on guessing an effec tive dipole length is of limited value. Th suggestion that manuagturens minhtincluce
the effective dipole length in the literature is helpful only if there is a standardized winding onfiguration, but this is not so in practice. In tive height, h_{e}, is given as

$$
h_{e}=\mu_{\text {rod }} \omega A N F_{A} / c
$$

The rod permeability, $\mu_{\text {rod }}$, is a function of
The rod permeabiity, $\mu_{\text {ord }}$, is a function of ameter ratio, so, together with the cros sectional areald be quoted as data. However he factor F_{A} is only unity for a short coil i the centre of the rod. In practice the
windings usually occupy an appreciable ength of the rod and are not centrally placed. The above reference gives data for es imating F_{A} and has graphs giving $\mu_{\text {rod }}$ as
unction of permeability and the length/
diameter ratio
Another consideration is that the designer oise ratio and this it is shown, involv naximising $h^{2} Q / F_{n}$, where Q is the unloade Q factor and F_{n} is the noise factor of the r. I am gra
his subject and thus providing an oppor unity for discussion.
E. C. Snelling
Haywards Heath

Sussex

- Snelling, E. C. "Soft Ferrites", Butterworth
London 1969, (Chap. 10)

WANTED - FOR THE
SCIENCE MUSEUM
Next March the Science Museum is mountnd although offers of exhibits are colinion nd although offers of exhibits are coming in
rom industry and collectors alike I should like to enlist your help in finding two item
re-war receiver, and a valve needed for th
The receiver I am trying to trace is the Scophony large-screen projection set o about 1937, which employed mechanical
scanning and modulated the light from a mercury vapour lamp by means of a 'super sonic light control'. The video signal was
modulated onto a carrier at the resonant modulated onto a carrier at the resonan
frequency of a quartz transducer and propa gated through a liquid as an ultrasonic wave The velocity of the wave was offset by the scanning process to give a stationary image approaching fifty picture elements; this technique, it was claimed, gave muc righter pictures than could be obtained with
conventional light controls transmitting only ne picture element at a time. Scophony produced several domestic

models, with screen widths ranging from 18 | odels, with screen widths ranging from 18 |
| :--- |
| 8 | giving a six-foot picture from a 3 kW arc. Th price of the 24 -inch model was 2220 guineas, so not many can have been sold, but it wa

ndoubtedly an advanced piece of en gineering and I should very much like to xhibit a specimen if one survives in any At the other end of the price
ye 817, a five-inch model selling for uineas; this was a 'vision only' set, the d out to the pick-up sockets of the owner radio. One of these little sets is being restored to working order for the exhibition, but the
restorer is stuck for one valve: a Hiva AC/TZ, which was a triode vetrode and served as line oscillator and output stages,
Again, any offers of help will be gratefuly Kecived.
eputy Keeper (Telecommunications)
The Science Musel
Exhibition Road
Exhibition Road
London SW7 2DD
tTelephone $01-589$
Telephone 01-589 3456, Ext. 638)

CITIZENS' BAND

Why are so many people against c.b.? It going to degrade or lower the position of that almighty being, the e licensed transmitting amateur. Surely this cannot be, as any
citizens' band would not be connected with or in, any amateur band. I am in full agreement with the people who argue about the
interference caused by operation on a.m. in interference caused by operation on a.m. in
the 7 MHz band. This is, as anyone with basic radio knowledge should know, useless for local or short-haul contacts, the all-round
answer being the use of u.h.f. and f.m. An Australian friend of mine tells me that since the introduction of a u.h.f. c.b. band in his country they get better range; also the
operating standards of stations seem to have improved.
I do not like the emphasis placed on the z in most letters,
on the radio and and in recent programmes on the radio and
television. All this talk of "Rubber Ducks" "Smokey Bears", "10-4" etc. has gone a long way to putting people against c.b. It may
sound romantic to some, but in my opinion does nothing to help.
In reply to Mr Riley's letter in the January issue, in the controlled experiment it is
apparent that the driver was compelled to apparent that the driver was compeled to
answer the questions put to him while trying.
to negotiate a difficcult course. Fair enough,
but surely in an actual "on the road" situation
any sane driver would firstly be moving very any sane driver would firstly be moving very
slowly, and if called on the radio could say "stand by, I'II call you back". Personally in
bad traffic conditions I even turn off my car bad traffic conditions I even turn off my car
set to avoid distraction. As to the reference to inexperienced c.b. users vs. experienced communictors, I think driving experience
comes first. Anyway one only gains ex perience by being able to do a thing in the first place.
In conclusion, on the arguments that a
citizens ' band could be misused citizens' band could be misused, you find in
all walks of life there are always a few who try to spoil things for others; one can even hear this at times on the amateur bands. Also
I think a good c.b. band could be a sorce income for the government, i.e. licence fees, VAT on equipment, possible c.b. magazines compulsory membership of a society such compulsory membership of a society, such as
the RSGB, so there can be some check that you're not being a bad boy. Finally, if anyone does not like c.b., he need not buy any
equipment, or even listen on the band, need
he.
h. Berry
Bristol

DISPLACEMENT

CURRENT
The pattern of magnetic field made when a very sharp edge of voltage propagates along
any TEM wave structure is the same as that obtained if the wave front is replaced by a
thin sheet of uniform conductor and the thin sheet of uniform conductor and the
current of the wave is applied as a balanced current of the wave is applied as
d.c. on one side only of this sheet.t.
If this experiment is If this experiment is performed. it will be
found that there is no magnetic field what ever beyond the sheet and no longitudina ever beyond the sheet and no ongitudinal
magnetic field at any point, despite the fact
that lateral current is clearly flowing in the that lateral current is clearly flowing in the
sheet. On page 67 of the March issue this sheet. On page 67 of the March issue this
result is described as being absurd, but it is nevertheless true.
Since the field pattern is just the same for the propagating edge as for the d.c.. case it
seems only reasonable to talk of a adisplacement current" when a magnetic field is caused by change of the vector D rather than ever of "displacement current" not causing magnetic field in some particular cases, and neither Maxwell nor Heaviside hav
looked a discrepancy in this matter
K. C. Johnson

Cheadle
Cheshire

The outhors reply:

In Mr Johnson's first paragraph, when he writes "uniform conductor", he must of
course mean "uniform resistor"" When a TEM signal advances at the speed of light, there is a close mathematical correevery point. When a TEM signal glides through a
dielectric edged by a perfect conductor, there dielectric edged by a perfect conductor, there
is a close mathematical correlation between the H field and the electrical current in the surface of the conductor.
D being a mathematicical function of E and i
also being a mathematical function of E it is not surprising that the two mathematical derivations from the same source, E, corre-
late, even to the extent that there is a con-
解解t that there is a con-
sistent relationship betwee
and i. One could say that these two deriva-
tions from E correlate by definition. Since $\frac{d(\mathrm{E} E)}{\mathrm{dt}}$
and i are obviously functions of E, it is mathematically impossible for the reverse
mathematical process (cf. logs and anti-logs) mathematical process (ch. logs and anti-logs)
to produce anything other than the oritinal E field from which i and displacement current
are derived.
The key
The key question is, "Does any function
which is correctly derived from a real which is correctly derived from a real
physical entity also have physical reality?" For instance, to carry the point to absurdity,
what physical reality can be attached to the "circularity"" α of a circle, defined in terms of circularity, α, of a circle, ,
$=\frac{C^{2}}{4 \pi^{3}}$
from whic
area A is

$$
A=\frac{\alpha}{\sqrt{1}}
$$

We could have just as much futile fun with circuarent" They are both the results of valid current. They are both the results or valid
mathematical manipulation. But do they exist physically, and are they useful? and produced much fog. Is it anything more and produced much fog. Is it anything more
than a mathematical derivation from the Poynting Vector, which we cal teaviside signal?
To pu
oo put it another way; if we describe an,
.
. a wave which has an edge, does it have
an edge? Displacement current "shows" that I. Catt, M. F. Davidson, D. S. Walton

CURRENT IN COAXIAL
CTABLES
Your recent contributions on the subject of
current flow in coaxial cables (March letters and "Did you know?" December issue) make heavy weather of the problem, but fail to come to terms with the nitty-gritty When a current-carrying conductor sheet, an equal and opposite current is in-
duced in the boundary of the hole; the total current through the hole must be zero. This current through the hole must be zero. This
follows from the fact that there can be no penetration of magnetic flux into the
material of the material of the sheet.
A coaxiar cable is merely an elongated
hole. A current in the centre conductor hole. A current in the centre conductor
induces an equal and opposite current on the
inside of the inside of the sheath. If the sheath is not
connected at one end, the current on its inner surface must continue back along the outer surface until it can again flow to the ground
plane aind thence to the plane, and thence to the load. If follows
that voltages induced aloñg the outside of the voble by an external field will tend to
the produtee current in the inner conductor
that proper shielding is not obtained that proper shielding is not obtained.
If energy is required to be fed thr sheet, the go and return conductors should
ideally be fed through the same hol ideally be fed through the same hole. Lack of
attention to this can result in unwanted attention to this can result in unwanted
coupling between r.f. circuits, and to
round-loop effects causing hum in sensitiv
ground-loop effect
audio amplifiers.
This subject is This subject is excellently treated by E. E (Chapman and Hall, 1945) in a section on the principles of screening.
J. L. Crosthwait
J. L. Crosthwait
Cheltenham, Glos.

NOVICE LICENCE FOR
AMATEURS?
The recently formed European CW Associa-
tion is examining the possibility of western European nations introducing a c.w.-.only
novice amateur radio licence. This licence novice amateur radio licence. This licence
would be a stepping-stone for beginners who wish to eventually qualify for a full amateur icence. Suggested licence conditions are: And radio theory. 2. A 5 w.p.m. morse test (administered by any mateur who h 3. Crystal control only, in defined segments of amateur bands (h.f. and v.h.f.).
4. Maximum power input 10 watts.
5. Maximum power input 10 watts.
only pass the morse test.
6. A novice licence could only be held for 2 6. A novice licence could only be held for 2
yearas in any 5 year period. To try and establish the volume of support
To the in for such a proposal I would be obliged if you
would publish this letter. Those in favour of would publish this letter. Those in favour of he idea, whether licensed amateurs or no
should send their name and address to me on a post card, at the address below. In the case of local radio clubs correspondence could be saved by the secretary informing me of the
number of his members who are in favour of the idea. Considerable support is essential the proposal is to succeed, and even then negotiations may take many moroan CW Association currently consists of the Scandinavian CW Activity Group (Denmark, Finland, Norway and
Sweden), the West German CW Activity Group, The TOPS CW Club (UK), and the C QRP Club (UK). It represents over 1500 censed radio amateurs and a number short wave listeners.
A. D. Taylor, G8PG
${ }_{37}$ European CW Assochill Road
37 Pickerill Road

ANTENNA AIMING

CALCULATIONS
As a yachtsman, I studied Mr A. M. Stephen son's article in the March issue with consid We were shown how to calculate the angle subtended at the centre of the earth by two
points on the surface. The author should have pointed out that if this angle were expressed in minutes (by multiplying by 60 surely is of interest that it is 9291 miles from Kit Hill to Melbourne?
The use of the nautical mile, of 6080 ft leads
to the proposition that the to the proposition that the grazing range nautical miles. Two 100 ft antennae have line of sight over water of 20 miles. The use of $\mathrm{V} h$
rather than the more accurate 1.06 Vh gives rather than the more acc
a small margin of safety.
sing author's calculations were checked nd exact agreement found. It would not have occurred to me to programme a calcu-
ator for a one-off calculation; what a pity hat the article was restricted to program mable machines when any scientific calcula I must protest that there is no such thing as negative angle. Latitude is either north or south of the equator and longitude is either
east or west of the Greenwich meridian ongitude has the dimensions of time and whoover heard of negative time? Has Mr
Stephenson's calculator taken charge?
Fig. 1 does not seem very helpful to me. Stephenson's calculator taken charge?
Fig. 1 does not sem very helpful to me.
There may well be differences beThere may well be differences be-
tween paths to the antipodes; it is recommended that the great circies be plotted on a Mercator's projection of the earth when the differences between land masses
and sea will be apparent. nd sea will be apparent.
A very useful and muc
A very useful and much needed article -
perhaps Mr Stephenson should have writter a book!
P. Wadham
Wadham
Carshalto
Surrey
The author repliek:
As a yachtsman, Mr Wadham has hit on one application which, to be honest, was not envisaged when the article was written
Actually, the article evolved from the real isation that (back in 1976), although good cientific calculators were becoming an conomic proposition for private small users, thely still bound by the restriction were of the old days when log tables and slide rules wer about the best tools that most folk could lay many instances.
Another consideration is that of appli cability. Calculators are developing rapidly, he makers more and more features so that heir products will continue to sell. Texas,
Hewlett-Packard, CBM are only three of the names that have shown signs of being aware of the 'specialist' markets by bringing out
calculators dedicated to navigational calcucalculators dedicated to navigational calcu-
ations. (Well, perhaps H-P have tended to rely more on the programmability of their stablished lines.) In 1976 one had to consider he difficulties associated with running a vice out at sea before serving the needs o someone like Mr Wadham. Now one can buy dedicated devices. So perhaps, sub-
onsciously, I omitted the seafarers on the grounds that they might prefer the traditional methods.
It is reassuring to learn that old and new approaches have yielded the same answers. I formula*. The equations given in the article were all the result of some rather tedious relationships and pages of algebra, an exerise I would not be eager to repeat. So although I suspect Mr Wadham of lodging his
tongue firmly in his cheek when he protests my use of negative angles, may I excuse
further effort on the grounds that (a) my further effort on the grounds that (a) my
calculator lacks compass-point keys and (b) calculator lacks compass-point keys and (b)
it works? Falkland Islanders and other in-
habitants of points south and west please habitants of points south and west please copy. Andrew M. Stephenson
"The name haversine comes from "half of the
versine" of an angle.t.tat is $1 / 2(1-$ coses $)$ where is the
angle concerned.-Ed.

Teletext remote control

by R. T. Russell

This concluding part of the article covers he construction, installation and operation of the ultrasonic remote control for the Wire/ess World teletext decoder. The receiver and transmitter for and May issues.

WHETHER USING copper-strip board or a printed-circuit board there should just about enough room in the or remote control unit, although it will probably be necessary to reduce the pacing between the original boards a an as possible. If the character roun ding board has been fitted, then th the front of the cabinet. Only thre connexions to the remote control board CC_{48}, pin 12, IC_{80}, pin 9 and IC_{78}, pin 4 are inaccessible without dismantlin the decoder, the majority of the board one or to the switches, although i board 4 (character rounding) and/o oard 3 (new facilities) are fitted, acces will be a little more difficult. It is sugg ation to board 2 be carried out and a the same time three flying leads atached at the above points for con exion to the remote control board ssembled and tested to ensure that it still works. The automatic clear can be tested by momentarily connecting the lead from (78.4) to 0 volts, whereupon he header should start "rolling" and, on hould clear just before being re written. Choose a page on which a genuine Clear Page bit is not expected. At this stage the remote control board an be fitted. Many of the connexion done with care, the wires can be soldered directly to the i.c. pins on the top of the board. The minimum of heat should be used, consistent with getting a good
If it is desired to dispense entirely If it is desired to dispense entirely
with the original push-button and thumbwheel switches the wires or iginally going to these should be transferred to the appropriate points on the newsflash select time on, time select clear, video switch (to tv), cut box,
reveal and the thumbwheel wipers (commoned). If preferred, the switches may be retained and a multipole local/ remote changeover switch fitted to select either the remote contro

Power supply

The interface board requires a +5 V -12 V supply at 15 mA max. for the u.a.r.t. The power consumption could be reduced considerably by using lowpower Schottky i.cs (74 LSS) instead of IC $_{307}$ must be a 7473, not a 74LS73.

Testing

Because of the digital nature of the circuitry there is a good chance that it will work first time, assuming there are no wiring errors. For this reason it pays make sure that no connexions are omitted or transposed. The boards should be examined closely for any unsoldered i.c. or component leads or switched on a check should be made that the power supply voltage is reaching all the i.cs and that it is in the correct range $(4.75 \mathrm{~V}$ to 5.25 V for the receiver and decoder boards). The tv isolating transformer whilst testing A normal, steady display (probably of random characters) should be obtained at switch-on, although the video-switch porarily disconnected from to be temcontrol board and connected to +5 V . Any obvious display fault at this stage must be due to one or more of the
connexions from the horizontal and connexions from the horizontal and vertical addressing to the remote con-
trol board having been connected to the wrong point or shorted. Such a fault can be located by disconnecting each of hese in turn.
Once a normal display is obtained, the remote keypad can be tried to see if any
of the control functions operate. If it is completely "dead" it is advisable to bypass the ultrasonic link by temporarily adopting the "wired" option shown in Fig. 3. It should be found that the hormally at logic 1 , but goes to logic 0 for a short time when any key is
pressed. If this does not happen the faul les in the keypad unit. If an oscilloscope is available the signal can be examined to ensure that it corresponds with the
format shown in Fig. 1 ormat shown in Fig. 1 . If a signal is observed at the seria operative, a check should be made tha (304.19) pulses to logic 1 each time a key is pressed. If not, then IC_{304} or its conof response has been obtained, testin should be fairly straightforward. Th miscellaneous functions (reveal, clea ext, tv) should be checked first, fo owed by the entry and display of page the selected page is correctly acquired and displayed by the decoder.

The spare command

As mentioned previously, a seven for general purpose use was included command is sent $(302,10)$ goes to logic and remains there until another com mand is sent. An inverted version of this signal is available at $(302,11)$. If a pulse rather than a steady signal is required pulse at $(305,6)$ using either diodes or NAND/AND gate. There are two point to note if the spare function is to b used. Firstly, if it is used to provide borne in mind that the decoder use line syncs as a timing reference and if channel is selected which has no signa present then the remote-control will lock-out and inhibit further changes. C_{304}, pins 17,18 and 40 from a separat 1600 Hz oscillator rather than from the ine divider. Secondly, by the nature of the coding system adopted for the he most likely one to be spuriously activated by reflections or other sources of ultrasound. If the occasional spurious peration is undesirable (as in the case of channel change) an improvement can e eftected by additionally gating with active only when the four leas significant data bits (IC_{306}, pins 3, 6, and 11) are all zero.
I would like to thank Humphrey Hin ton for his encouragement and advice, assistance with printed circuit work.

Literature Received

Catalogue of instruments for hire from ivingston in 1979 now available. Over 300 items now offered. Livingston Hire Ltd,
Shirley House, 27 Camden Road, London
WW 401 Data sheets are published by Cotron on PMC
eries of colour video monitors, intended rimarily for the display of computer raphics. Cotron Electronics Ltd, Rockland
Works, Eagle Street, Coventry CV1 4GJ

50 watts of mains-frequency a.c. are pro ded from 24 V or 50 V inputs by the ROAC neliwave inverter from Roband, who ronics Ltd, Charlwood, Horley, Surrey RH6

Brochure on the specifications, design and Film Cireuit Division, Paignton,
ort catalogue illustrating Bren ange of accomplishments in inverters, high voltage supplies and a cardiac teaching aid is btainable from Brandenburg Ltd, 939 Lonon Road, Thornton Heath, Surrey CR4 6JE

Second part of "Tecknowledgey" - Ambit's information amateur) kits and components. More informative than many we have seen. Price list not included. Ambit International, 2 to applicants writing on company notepaper, 50 p to anyone else.
Dual-in-line switches from Erg described in colour brochure obtainable from Erg Indust-
rial Corporation Ltd, Luton Road, Dunstable, rial Corporation
Beds LU5 4LJ

Dipping unit for applying varnish to printedcircuit boards is subject of data sheet from Routh Mars Sch

Travel for Telecom 79

Associated with the opening of WARC 79 this year (24 September to 30 November) is another important event in Geneva, the 3rd
World Telecommunications Exhibition and Conference. Called Telecom 79, it is spon sored by the ITU and supported by the
telecommunications administrations of the 154 ITU member countries and runs for the
period 20-26 September. Wiẹless World wit be taking part.
Our publishers, IPC Electrical-Electronic Press Ltd, have arranged special visits to Telecom 79 in association with Commercial Beau-Rivage, situated on the lake in Geneva, and air travel from London (Heathrow) by
scheduled flights in scheduled flights is arranged to offer three or
six nights. Tour A (3 nights) is depart 20 six nights. Tour A (3 nights) is: depart 20
Sept; return 23 Sept. Tour B (3 nights) is: depart 23 Sept; return 26 Sept. Tour C (6 nights) is depart 20 Sept; return 26 Sept. Price of tours A and B is $£ 248.00$ while tour C
is $£ 348.00$ (all sharing a twin bedded room; single room supplement $£ 15.00$ per rioght).
Accommodation-only can be provided. For a Accommodation-only can be provided. For a
booking form write to Wireless World, Dorbooking form write to wireless. Worla, Dor-
set House, Stamford Street, London SE1 9LU.

Functional logic symbols

- acknowledgement

The article on functional logic symbols by G. M. Whittaker which appeared in our April to a symposium on technical documentation held by the Society of Radio and Electronic
Technicians in November 1978. The Society has asked us to point out that the article also appeared in their journal Electronic Technology in January 1979. We apologize for the
omission of this acknowledgement from the omission of this ackno
Wireless World article.

ALTHOUGH this is not a simple projec ith careful soldering a simple project m.o.s. precautions, the construction hould be quite straightforward. It is worthwhile building the power supplie first and testing them under load condior the -5 V and +12 V , until th egulators have reached their working emperatures. As a power supply failur an be particularly damaging, Nenerous heatsink, esp
The next section to build should b he v.d.u. circuit, which will provide th video and sync signals required in the evelopment of the display interface. T uilt as described in part 2. With th character generator and the 21L02s lef out, and with the variable resistor set to maximum, a correct display will con haracter generator and mories is place, these oblongs will become row of random ASCII characters. When this is displayed, the variable resistor is reduced to move the display up the rrect linearity of all 32 lines Reducin he resistor too much will either cramp or expand the top line and eventually wrap it back into what will then be ome visible fly-back. Table 2 give d.u. and table 3 gives processor checks. Once the circuit has been completed it should be thoroughly checked. A particularly devastating fault occurs if power lines appear on the wrong i.c circuits. An ohm-meter, connected bet ween each of the supplies in turn and he i.c. pins, will check for this kind o ault. Cautious constructors need only isert IC $_{18}$ and IC $_{26}$ out of the memory covering 1C 00 to 1 FFF, for the initia est. Fig. 17 gives a suitable sequence for these tests.
The computer requires an ASCI oded input, comprising 7 bits of in strobe pulse, active during the presence f the code at the computer inpu differ. The Carter type 756 keyboar will give such signals when connecte shown in Fig. 18. For those construc ESC; CTRL and - are not required, and

Fig. 17. Test sequence for the computer. Fig. 18. Connection for the Carter 756 keyboard.

Using the computer
Whing the computer tested, the r.oms and at least IC blocks 22 and 26 should be inserted. Two pro-grams, one in the low-level and one in the high-level language, are programthe third r.o.m., and these will be used to demonstrate the computer's ways.
In the tables and explanations of commands and program lines, the symbol \sim mean at that point, e.g.
TAPE
18001880
means that you type TAPE space 1800 1880. As explained earlier, this is one o the bases of the systems operation

Low level operation

When you have a high-level language, working in machine code may seem like talking in Morse code. However, lowusually occupy less mroperly written, faster and allow the computer to be used as a controller of processes, as well as a calculating machine. Table 4 lists the computer's machine code commands. At the address 0 B 16 , there is an example of a code-breaking game where the
computer makes up a four digit number using the digits 1 to 8 , and then marks your attempts to guess the code by awarding black symbols for correct digits in the correct place and white code which are in the wrong place With

$$
+5 v
$$

$$
\text { Polarising cut } \nearrow
$$

Table 2 v.d.u. test points and waveforms		
Location	Waveform	Possible remedy
${ }_{16} \mathrm{C}_{28}$ out	8 MHz clock, t.t.l.	${ }^{1} \mathrm{C}_{28}$ or crystal
${ }^{1} 1{ }^{32} 28$ out	$4 \mu \mathrm{~s}$ pulses every $64 \mu \mathrm{~s}$	check back through $1 \mathrm{I}_{48}, 1 \mathrm{I}_{30}, \mathrm{IC}_{29}$
${ }^{1} \mathrm{C}_{35} \mathrm{pin} 11$	approx 50 Hz , t.t.l.	check through $\mathrm{IC}_{35}, \mathrm{IC}_{29}, \mathrm{IC}_{34}$, and then.
IC_{36} pins 1,6	approx 100μ s pulses every 20 ms	check IC_{36} p p 6 is normally low
$1 C_{37} \mathrm{pin} 2$	${ }^{\text {every }}$ 16 pulses every $64 \mu \mathrm{~s}$	check $\mathrm{IC}_{3 \mathrm{Cb}^{\text {b }} \text {, }}, \mathrm{IC}_{48}$
${ }^{1} \mathrm{Cas}_{45} \mathrm{pin} 1$	1.333MHz with 8 MHz bursts,	check IC ${ }_{37}$, IC ${ }_{3}$
${ }_{1645}$ pin 7	$48 \mu \mathrm{~s}$ bursts of data every	check IC ${ }_{45}$
	$64 \mu \mathrm{~s}$	
Video	mixed video and.	check IC ${ }_{33}$
Sync.	blanking information mixed syncs	check $\mathrm{IC}_{32 \mathrm{~b}}$ and the differentiating network

the computer in the READY state, type and then your first guess at the code, say 1234. The computer will mark your guess and wait for your next attempt.
Note that, as soon as you type someNote that, as soon as you type someRUN, the READY disappears, and does not return until you break the code, indicating that the program has finished running. The READY state may be achieved at any time by pressing
RESET, or by typing FS. To examine the code set during the program, return to the READY state and type
The computer will then list from address 1FE4 to 21CF. The format used for which will appear on that line, and then the remainder up to the end of the row of 16 , spaced in blocks of four for easy inspection. When a line is broken into,
as in this case, the computer maintains the layout by indenting the top line by the correct amount. The first four bytes contain the computer's code, a 00 representing a digit 8 .
The game may be played over and over again, using the comman
RUN 0 B16
but, as an illustration, suppose that the program is iso be simplified. To alter the program, it must first be copied into the r/w.m. so type
MOV which will move the program out into
$\mathrm{r} / \mathrm{w} . \mathrm{m}$. and, because some of the bytes in the program relate to the memory area that the program occupies, type The computer will reply

1E24 1E37 IE3D 1E5B IE62 meaning that it found OBS at these Now list the program LIST . 1 E16
and note that the byte at $1 E A C$, i.e. the 13th byte on the row starting 1 EA0, is a 77. Type
which the 77 will change to a 33 . This at which the 77 will change to a 33 . This
will limit the number range in the code will limit the number range in the code
from 1 to 4 , rather than 1 to 8 as in the original. The computer will not return to the READY state because often more than one modification is carried out at a
time and, as in this case, the 0 B at 1 E 5 B , which was altered in the COR command, was not part of an address to be altered, but is the k in the word black, and so must be changed back with
Now, press FS to achieve the READY state and

RUN . 1 E16
to play the simpler form of game.
Using the machine code is essentially more details will appear in part 4

High level language
able 5 lists the BURP statements, and

Table 3. Processor checks.		
Location Point A IC 1 pin 18 Point B IC C_{1} pin 6 Address bus	Waveform	Possible remedy
		If it is low, test the I.e.d.
	8 MHz	If not, check clock buffer circuit around $\mathcal{I C}_{14}{ }_{\text {a }}$.
	Various	A_{0} to A_{6} should be cycling through refresh!
		addresses, A_{7} to A_{1} s should be low, except for
		A_{8}, which carries a 500 kHz square line not conforming to this pattern is no
		necessarily at fault. Check for levels betwee
		0.8 and 2.4 V , as these imply a short to one of

	Table 4. Machine code commands.
ALPH.	Produces an alphanumeric test pattern on the v.d.u.
	Changes the contents of location XXXX to YY
COR, XXXX YYYY AA BB	Scans XXXX to YYYY-1 inclusive and alters any AA to BB.
FILL, XxXx	See note 3.
FIND. XXYY	Finds the consecutive bytes XX YY and lists the addresses at which they occur.
LIST ${ }_{\text {, }}$ Xxx	Lists the contents of the memory from address $X X X X$ up to a full v.d.u. screen.
LOAD $\mathrm{XXX} \times \mathrm{x}$	Loads hexadecimal data at XXXX, using the same display format as in list. To load ASCII directly, type a [and to return type a] after which, the computer gives the next byte's address and continues to load hexadecimal data. To leave LOAD, type @ which gives a full listing of what has just been loaded, or press RESET or the FS key to regain command.
MOV, XXXXYYYYzzzz	Moves the block XXXX to YYYY-1 inclusive to the area of memory beginning with the address $Z Z Z Z$.
PRINT XXXX	Lists from XXXX on the second output device
PROM.	Used in conjunction with the e.p.r.o.m. programmer, this programs the block of data at 1 COO to 1CFF inclusive into the sector of the 2708 selected on the programmer.
READ XXXX	Reads from tape into memory, starting at location XXXX. READ must be terminated by pressing any key, once the tape has been read in
RUN ${ }^{\text {xxxx }}$	Runs from address XXXX.
TAPE ${ }_{\text {KXXXXYYY }}$	Records, on tape, a short leader of stop bits, followed by the data at locations $X X X X$ to $Y Y Y Y$ - 1 inclusive and a short trailer of stop bits.

-Having accepted the alteration, the computer lists out from the previous LIST command starting address. Nomaly, a List of the area in which he alteration is to take place will have been carried oun v.d.u. screen as well as in the memory. After an alteration, the computer does not return to the command state, but waits for any further alterations, typed in as
and so on. To return to the command state, type FS or press RESET
Notess

1. Take care when using MOV. MOV 1 DOO 1 EOO 1 CFF will work, and move the block 1 D00 to 1DFF
 While this can sometimes be useful for filling out a block with a particular byte, to do this properly requires a MOV of the block to a separate, vacant, area and then a MOV to 1001 ,
2. The PROM command takes about 40s to
this time the computer is fully occupied. 3. If less than 256 bytes are to be programmed into an e.p.r.o.m. sector, and the other must be left blank for later additions to the e.p.r.o. ms contents, or, if you wish to add this later bit to an already partly filled e.p.p.r.o.m... FFs must be present at the bytes which are not to be programmed. This can be
achieved by using the extra command FIL $X X X X$, which will fill from $X X X X$ to the next $Y Y O 0$ with

WIRELESS WORLD, JUNE 1979
FFs, either before loading into the p.r.o.m. area, or, after loading, to mask off the other unused bytes
up to 1 CFF. This command also makes programs easier to study on the v.d.u. as it can be used to mask off the rubbish following a program. ASCII mode of loading. Also, do not type in any] in the string of characters as it will terminate your. graphics, whose firmware is already in the 2708 . Ordinary parentheses, (and) are quite acceptable to the computer.

Table 5. Burp statements.			
INPUT, $A ; B$ etc. LET, $X=A_{n} \operatorname{SiN}_{n} \mathrm{SQ}_{n}$ etc.	Inputs and assigns one or more variables. Assigns the value computed in the expression following the $=$ sign to X.		
$X=Y$ THEN, 50	If the condition (which may be $\overline{<},=$ or $>$) is met, then go to-line 50. Otherwise, continue.		
	X takes the value 1 , the lines up to the line NEXT X are then executed. X is then increased by B and the lines executed again, and this continues until X is greater or		
NEXT ${ }_{n}$ GÓSUB 200	equal to C , at which point the computer carries on through the line NEXT X to the next one. Goes to line 200 and executes from there until the line		
RETURN.	Goes to line 200 and executes from there until the line RETURN is found, and then returns to the line following GOSUB. GOSUBs may appear within GOSUB blocks.		
HALT.	Halts execution until any key is pressed.		
	Clears, and resets the PRINT position to, the top line of the display area		
ERȦAE,	the display area. As TOP, but it clears the whole display area.		
END ${ }_{\text {G }}$ 25 or GOTO 25	Stops execution and returns to the command state.		
	As PRINT for the second output device.		
PRINT,...			
may appear An	A, printed with n figures after the decimal point and then spaces for the blanked characters, 13 in all. For less than an 8 digit mantissa, the last figure is rounded if necessary.		
A	A, printed with the same number of figures after the decimal point as the previously printed variable or, if it is the first one to be printed, to four figures. This four can be altered in r.o.m. location 0818 by programming 01		
An,	As An but with the blanked figures completely suppressed and, if the number is in scientific notation, with the exponent and exponent sign against the mantissa.		
A,	As A but with the suppression described above.		
Summarising, without the comma, printed figures always occupy 13 screen locations and thus columns of results will be tabulated no matter what the magnitude of the number. With the comma, alphanumeric data (see below) and variables may be printed in the same line without large gaps appearing.			
"Printed text",	Prints the actual characters within the quotes umplying that quotes must not appear in the string of characters.		
It is not possible to have a second (or subsequent) FOR ... NEXT block within a FOR NEXT block, because the single on-chip memory in the MM57109 is used as a loop counter in conjunction with the NEXT line. These loops, if required, can be set up using for example, in place of the FOR line given,			
20, LET $n=1$, replaces the FOR			
22^{21} n $\} \quad l i n e s$ within FOR and NEXT			
23n ${ }^{23}$			
25, IF, X < C ${ }_{\text {, }}$	THEN, 21, replaces the NEXT		

ions for LET statements. With th computer in the READY state, type MOV - OBB 50 OC 000 C 00
and then change to the high leve language by pressing RS on the key replaced by BURP. The RS key types in RUN - 0800, and initiates the high leve system. The low level MOV command noves the sample program in r.o.m. out ito the r/w.m., where it can b examined by typing

005 FOR A $=1$ STEP 1 UNTIL $25-$
006 LET L = A LOG -
007 PRINT A0 L8
009 END-
OC4A
The dash shows where a line ends and irtually every term, including the las address OC4A gives the upper limit of he program storage currently in use and from $0 C 00$ up to $1 D C 0$ is available Now type

RUN ${ }^{5}$.
The computer should print the common logarithms of the numbers 1 to 25 When it has finished, the computer is ver BURP is the only word on the to line. Type DEL
and the program will list out with lin number 6 deleted. Note that the end address is now 0C3B, i.e. when lines are remaining lines back towards the start of the memory space. This makes best use of the memory and stops the build up of rubbish within the memory which would slow
tion. Next, Next,

ADD
$\mathrm{L}=\mathrm{A}$
6. LET $\xlongequal[\mathrm{L}=\mathrm{A} \text {, ROOT } \mathrm{R}]{ }$

After typing the colon the word ADD will disappear, i.e. you are back in com-
mand. The colon is necessary at the end of an ADD or a LOAD because it inserts the hex byte C 0 at the end of the program block. This code tells the com puter where to stop and go back from, when it is
memory. Now, RUN 5
which will list out the square roots of the numbers 1 to 25. Then,

$$
\begin{gathered}
\mathrm{DEL}, 6 \\
\text { ADD }
\end{gathered}
$$

$$
\begin{aligned}
& \text { 6. LET } \mathrm{L}=\hat{A}, E X . \\
& \operatorname{RUN}, 5 .
\end{aligned}
$$

This program lists the natural anti-logs, e^{x}, of the numbers 1 to 25 , and will show how the display switches over to scien-
tific notation the last result tific notation, the last result being
7.2004907×10^{10}. Although mathematically correct, these are rather crude presentations of the results. Type

hich adds a heading above each of the columns, or, DEL 7
7 . PRINT "THE NÂTURAL, ANTI
LOG © OF " AO, " IS "L4 RUN ${ }^{5}$.
which gives a different display format see Table 7. Note that the comma afte A0 suppressed the characters after the arge gap. L4 means than leaving arge gap. L4 means L, printed to compaction of the scientific results tha

	Table 6. Mathematical expressions for LET statements.
Expression	Effect
+-*!	$Y+X \rightarrow X, Y \rightarrow X \rightarrow X, Y X X \rightarrow X, Y / X \rightarrow X$. In these four operations, the stack. collapses thus; $Z \rightarrow Y, T \rightarrow Z, O \rightarrow T$.
Yx	Y to the power of $X \rightarrow X$. Stack collapses as above. Y, Z, \dagger,
REC	$1 / X \rightarrow X$, i.e., reciprocal of X. In this, and the following, Y, Z and T remaini unchanged.
ROOT	$\sqrt{ } \times 1 \times \mathrm{x}$
so	
TENX	$10^{x} \rightarrow \mathrm{X}$ i.e., common anti-logarithm.
EX	$\mathrm{e}^{x} \rightarrow \mathrm{X}$ i.e., natural anti-logarithm.
LN	$1 \mathrm{n}(\mathrm{X}) \rightarrow$ X i.e., natural logarithm of X .
LOG	$\log (X) \rightarrow$ Xi.e., common logarithm of X.
SIN	sine $(X) \rightarrow X$ All trig. functions operate in degrees.
cos	cosine (X$) \rightarrow \mathrm{X}$
TAN	tangent $(x) \rightarrow X$.
SIN.	$\sin ^{-1}(x) \rightarrow x$
cos-	$\cos ^{-1}(x) \rightarrow X$
TAN-	$\tan ^{-1}(x) \rightarrow X$
DTR	Converts X in degrees to radians
RTD	Converts X in radians to degrees
NEG	$-\mathrm{X} \rightarrow \mathrm{X}$ i.e., chiange sign.
'PI	$3.1415927 \rightarrow X$
ENT	$X \rightarrow Y, Y \rightarrow Z, Z \rightarrow T$. T is lost, X remains in X.
ROLL	$Y \rightarrow X, Z \rightarrow Y, T \rightarrow Z, X \rightarrow T$. Nothing is lost.
XĖY	X exchanges with Y.
In use, all	expressions are followed by a space, e.g. for.

$$
\begin{gathered}
x=\frac{2 \pi \sqrt{L C}}{} \\
\text { LET, } x=L, C, R o l
\end{gathered}
$$

REC.

a comma would bring. Try

$$
\begin{gathered}
\text { DEL } \mathbf{D D}^{7} .
\end{gathered}
$$

7 . PRINT "THE NATURAL. ANTIOF" A0 " ${ }^{1 S}$ "L4,
to see the difference. If you make mistake in these exercises, just termin ate the line with a RETURN and type it in again. It is important, as already
explained, that the LOAD and ADD explained, that the left with a colon do not be tempted to do so with an RS. If you have corrected a line in this way, when back in the command state, delete that line, and the computer will erase
the first line it comes to with that the first line it comes to with tha second version in the correct place. Naturally, if you have mis-typed a line twice or more, this deleting procedure must be repeated until the correct line appears in place. The running of a propressing any key on the keyboard, but as this returns the computer to the low-level, READY state, follow it with an RS for BURP.

Loading programs

Programs are loaded by typing
and then the lines of the program, each of which must start with the number o that line. These lines do not have to be three digits of the number need to be typed in as they appear in the list. For internal reasons of the computer, it is not possible to have lines 0,192 , or 237 ,
It is recommended that, for speed of execution, the lines used are kept fairly close together numerically, as this saves the computer scanning for lines whic do not exist. In program development, it helps to initially use every third line for later additions. Remember that LOAD starts loading at the beginning of the program storage area and will thus erase any previously stored programs. II
you want to add to the present lines. use you w
ADD.

Entering data
When the computer comes across the program line INPUT, it goes to the next clear line on the v.d.u. and waits for you specified in the program line. Numbers entered must be followed by a space, xcept in the case of scientifically ex pressed numbers, which, because of the nised as terminated when the second exponent digit has been typed in. The l.e.d. associated with the keyboard is useful because it indicates whether the do something. do something.
Fuired during, remember toading the spaces re
 three factors you type in during To be continued

The Sinclair PFM200 digital frequency meter. $20 \mathrm{~Hz}-200 \mathrm{MHz} .0 .8$ digits ... under £50.

The Sinclair PFM200 brings digital frequency measurement within the reach of every engineer. It has a performance comparable with the very best bench-top instruments, but it's packaged in a compact case which is rugged but light, ready for use anywhere. intruments Its 8 -digit display and variable gate time give hig resolution coverage of frequencies from 20 Hz to over 200 MHz . It gives you exceptional sensitivity and simplic at a fraction of the price of meters with similar
specifications!
The PFM200 is ideal for use with audio, video and radio systems, and all electronic and digital circuitry. Now every development engineer, technician, student and hobbyist can affor

The PFM200 embodies Sinclair Radionics' seven-year experience in digital test equipment design and production

PFM200: features

$20 \mathrm{~Hz}-200 \mathrm{MHz}$ guranted (typically better)
Frequency resolution down to 0.1 Hz High sensitivity (10 mV typical High-accuracy crystal timebase Sharp, bright, easily-read LED display Built-in attenuator
Variable sampling rate
Low-battery indica
Truly portable

Where to use the new

 PFM200The PFM200 is useful in every field of electronics, providing the ultra-precise frequency
Transmitter checks: mobiles, ham, radio control - check frequency and stability on Low and High band VHF, etc, up to 200 PFM200' 1 al the need for direct connections. Audio testing and design: check
oscillator frequencies, bandwidth limits crossover frequencies, resonances, etc, with resolution down to 0.1 Hz .
Digital testing: check computer clock frequencies, divider ratios and other digital circuitry.
RF circuit checks: test local oscillators, BFOs, test IF and detector performance circuits, scanning frequencies, video bandwidths, etc.

\qquad the right amount (usual 14-day moneythe right amount (usual 14-day money back
to us.

Technical

specification

Frequency range: 20 Hz .to 200 MH Display resolution: up to 8 digits Lowest frequency resolution: 0.1 Hz Gate time: decade adjustable from 0.01 secs to 10 secs
5 per second rate: varies with gate time up to
Display format: 8 LEDs, direct readin in kHz.
Attenuator: - 20 db
Input impedance: 1 M in parallel with 50 pF Timebase accuracy: $0.3 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$, $10 \mathrm{ppm} /$ year Dimensions: 6.2 in $\times 3$ in $\times 1.25$ in Power requirement: 9VDC or AC adaptor
Sockets: standard 4 mm for resilient plugs Standard accessories: test leads and prods, carrying wallet, owner's instrüction manual
Optional equipment: AC adaptor for 240 V 50 Hz power; deluxe padded carrying DIN and phono adaptors, plus telescopic aerial for off-air transmitter measurements

Sinclair Radionics Ltd, London Rd, St Ives, Huntingdon, Cambs., PE17 4HJ,

PFM200 Order Form

Please send me.........(qyy)
PFM200s at $£ 53.78$
(inc 8% VAT) each
$1 . \quad$ (qty) De-luxe
carrying cases at $£ 3.24$
(inc $8 \% \mathrm{VAT}$) each
for 240 V power at C 53.24
$\xlongequal{\text { at }} £ 10.58$ (iny connector kits 8% VAT) each
Post \& packing (please add) $£ 0.65$
I enclose cheque/PO made payable to
Sinclair Radionics Ltd for (indicate total
amount) $£$ -
I understand that ifl am not completely
satisfied with my PFM 200 I may return it satisfied with my PFM200, I may retu
within 14 days for a full cash refund.
Name....
Address
露 - -
World leaders in fingertip electronic

POWERTRAN

PSI COMP 80280 based COMPUTER DESIGN BEING PUBLISHED IN WIRELESS WORLD THIS MONTH!

Value Added Tax not included in prices

Expont onders: No Vat. Postige charged at actual cost plus 50 P
henoling and documonation.
U.K. ORDER

UK Carriage fre

POWERTRAN COMPUTERS

(a division of POWERTRAN ELECTRONICS) PORTWAY INDUSTRIALESTATE ANDOVER ANDOVER HANTS SP10 3NN (0264)64455

CIRCUIT IDEAS

Single switch doubles

 bridge voltageIn Fig. (a), with the switch open, D_{1} to
D_{4} act as a full wave rectifier feeding D_{4} act as a full wave rectifier feeding C_{2}
When the switch is closed, C_{1} becomes charged via D_{4} when A is positive with respect to B, and then feeds C_{2} via D when B is positive with respect to A charged to the peak voltage of the a.c. input, and C_{2} becomes charged to twice the peak voltage. Diodes D_{1} and D_{2} are both reverse-biased and do notconduct Resistor R_{1} discharges C_{1} when the If the switch fa
the circuit in Fig. (b) is preferable be cause the ripple frequency of V is 100 Hz rather than the 50 Hz of usual doubler circuits, and is
D. D. Williams
London

(a)

(b)

Chopper stabilised amplifier for d.c. voltmeter

This circuit was used to reduce the offset of an op-amp in a battery powered d.c. voltmeter.
The differential input voltage is alternately inverted by the c.m.o.s.
switches in IC switches in IC_{1}, and the amplified voltage at B is demultiplexed by a second
set of switches. Voltages V_{A} and V_{B} have the same offset component but opposite magnitude components, therefore the differential output $V_{A}-V_{B}$ contains virtually no offset. Use of an equal mark-to-space ratio chopping
waveform and well matched analogu switches ensures good performance. The prototype used an op-amp with a measured input offset of about 1 mV , and this was reduced to less than $0.5 \mu \mathrm{~V}$ with the circuit shown. This level is
negligible on a 1 mV f.s.d. scale, and only $1 / 2 \%$ f.s.d. on a $100 \mu \mathrm{~V}$ scale. The error can be reduced still further by trimming G. C. Hammon
G. C. Hammond

Nuneaton

Triangular wave generators:

current switching

by Peter Williams, Ph.D.

It could be imagined that an operational amplifier is the only proper way to construct a
triangular-wave generator. For some time it was the easiest way to construct one of high linearity and has the additional merits of low output impedance and is capable of voltage control. The restriction on frequency response implied by the limited small-signal bandwidth of
the operational amplifier is severe enough; the large output swing often required from a the operational amplifier is severe enough, the large output swing often required from
generator brings the second and even more severe constraint of slew-rate limiting. At $0.5 \mathrm{~V} / \mu \mathrm{s}$ generator brings the second and even more severe constraint of slew-rate limiting. At $0.5 \mathrm{~V} / \mu \mathrm{s}$,
for standard op.amps and then for 20 V pk-pk triangular waves a cycle must occupy 80 s , i.e. corresponding to 12 kHz maximum even if distortion and tolerance effects are ignored. Thus at higher frequencies direct switching of currents into a capacitor is the preferred method. This is the basic method employed in integrated circuits as apparently diverse as phase-locked loops
and sine-square-triangle generators. A simple illustration of the principle is shown using a lon
long-taied pair and a circuit mirror. A square wave drives the long-tailed pair transterring the
constant current from one eollector to the ther. The current mirro is thes constant current from one collector to the other. The current mirror is thus driven from +1 or 0
and draws an approximately equal current. The net current in the capacitor changes from -1 to and draws an approximately equal current. The net current in the capacitor changes from -1 to
+1 when the input base of the long-tailed pair is driven more positive then $V_{\text {REF }}$ (N. $B . V_{\text {REF }}$ must
itself be more itself be more positive than the most positive output potential desired)

The previous circuit is related to the common-base form of ramp generator. It requires a separate current source and suffers from the limited accuracy of current transfer of the basic current mirror. A related circuit easily implemented with discreeie components is shown with
complementary current sources connected to a common point. By feeding a square wave to the complementary current sources connected to a common point. By feeding a square wave
two emitters via diodes these currents are by-passed into the square-wave generator.
Provided they have been set equal in magnitude initially then the available charging current is possible by varying R^{\prime} (which could be replaced by a voltage, light or temperature-controlled resistance for external contro). In these and the following variants he capacitor voitage needs to be buffered if the triangular wave output is to be fed to a resistive load. In some cases such as
the phase-locked loop referred to, the waveform is only incidental to the voltage-control facility. the phase-Iocked loop referred to, the wavelorm is only incidental to the voltage-control facility
and the square-wave output of the complete generator is the more useful. In these cases the capacitor remains unloaded and separate buffering is not needed. It is convenient to anticipate a particular form of level-sensing switch based on a set-reset
flip-filop. Preceded by a pair of comparators referenced to two different voltages. it is used to
drive any switchable drive any switchable current generator such as those described above. The loop is closed and the capacitor charges linearly untin one of the reference evels is reached. This reverses the
flip-flop and hence the polarity of the current. The capacitor charges in the opposite direction until the other threshold is reached and the flip-flop and current return to their original states initiating the next cycle. This illustrates the way in which the elements of the ssytem are
interconnected; each subsection can be replaced to produce a variety of practical versions. One interconnected; each subsection can be replaced to produce a variety of practical versions. One
example that is discussed further below is to replace the comparator flip-flop combination by a Schmitt trigger such as the op. amp. form. Alternatively there is a standard i.c. designed for astable / monostable operation that contains all the comparators, flip-flop, biasing and output
networks, that can be used directly with a switchable current source.
A useful modification of the current reversing circuit is also convenient for operation with the same i.c. (generic type number 555). A permanent current of 1 is fed to a capacitor while a
second current of reverse polarity and twice the magnitude is alternately connected to and disconnected from the capacitor. Provided the ratio of the current magnitudes is precisely
2:1, the net current flow switches between +1 and -1 This simplification 2:1, the net current flow switches between +1 and -1 . This simplification is related to those employed with operational amplifiers and is used in commercial waveform-generator integrated
circuits. Provided the currents can be controlled from a common voltage (or current) usually via
and current mirrors, the linear control of frequency follows, since the peak-peak amplitude is restrained by the sensing circuit to ie between precise reference levels. For example if doubling the control voltage doubles the currents, then because the slopes are doubled the voltage
excursions are covered in half the time, i.e. the frequency is double. Although an ideal current generator cannot be open-circuited (infinite voltage would resultt) many practical circuits merely have a very high slope-resistance over a limited voltage range and the current can be interrupted by a single-pole on-off switch.

This is illustrated in a circuit that uses a 555 i.c. The precise operation of the circuit is conductance as the input taken to the comparator inputs (pins 2 and 6) reaches the upper and lower thresholds. The $p-n-\mathrm{p}$ transistor delivers a permanent current of l while the $n-\mathrm{p}$-n current of 21 flowing in the opposite sense in the capacitor is repeatedly interrupted as the transistor slope-error provided the charging current is large enough. Substitution of an op. amp. Schmitt would only serve if the input current is equally low. As with inverting and non-inverting amplifiers it is found that only one form fits this requirement. A voltage follower buffer can
always be inserted between the capacitor and the level-sensing circuit provided it can handle thays be inserted between the capacitor and the level-sensing circuit provided it can handee reintroduces the bandwith and slew-rate constraints if the voltage follower uses an operation

Triangular wave generators - 2

$V \approx(52 \log 200) \mathrm{mV} \approx 275 \mathrm{mV}$

Hence a square-wave of 275 mV peak-peak symmetrically about $\mathrm{V}_{\mathrm{RFF}}$ is of getter than 1%, assuming high current gains. If $\mathrm{F}_{\text {EE }}$ falls below say 100
then the current gain will dominate the fall of t below .
-The circuit requires large $V_{\text {EE }}$ breakdown voltages if
 buffer if of high enough current rating

$$
\frac{1}{\frac{d V}{d t}} N_{\text {REF } 1}-V_{\text {REF } 2}
$$

$$
\begin{aligned}
& f=\frac{d V}{d t} \frac{1}{2\left(V_{\text {REF } 1}-V_{\text {REF } 2}\right)} \\
& =\frac{1}{2 C\left(N_{\text {REF } 1}-V_{\text {REF } 2}\right)}
\end{aligned}
$$

are then \mid and $I-2 \(1+x)$ i.e. I and $-1(1+2 x)$.
Thus the two ramps differ in the time taken to complete them by a fraction $2 x$ current shifts the frequency by 1% while changing the ratio of the times by
2%.

Acoustic breakthrough in record players - 2

Listening tests to decide acceptability of the distortion

In the May issue the autho
test procedure and a set o
measurements showing the sensitivity of record players to acoustic breakthrough
from associated loudspeakers. Here they discuss the audible effects and their significance in practical conditions.
FINALLY we can try and decide on whether these acoustically induced
noise effects are of any significance in noise effects are of any significance in
practice. The objective tests confirm prattice. Tdistortion voltages' are induced into the pickup circuit by the signals have been predicted without any experiments. The real question is whether these distortions are audibly significant under practical conditions.
We attempted to decide this by
careful listening tests though this is no careful listening tests though this is not
any easy decision to reach for it is on a par with trying to decide on just what harmonic distortion is acceptable in a reproducer system. The audibility of type of music being played that it is type of music being played that it is
rarely possible to make any precise statement about the percentage distortion that is detectable and exactly the same comments apply to the problem of
deciding on the amount of acoustically induced breakthrough distortion that is subjectively detectable or acceptable. The charts show that the majority of the breakthrough noise occurs at
frequencies below about 300 Hz . Music frequencies below about 300 Hz . Music or other programme material that con-
tains little or no energy in this low frequency end of the spectrum will be less likely to excite the pickup than will music that has a lot of the energy in the
band below 300 Hz . The colouration that is introduced at a breakthrough that is introduced at a will maintain continuous oscillation is a function of the type of music and indeed it has many characteristics of music. Not only may it not be audible but it may be
thought by many listeners to enhance the quality of the music and to that extent it may be a 'distortion' that is desirable. Thus our findings should be considered as only indicating the order of the result rather than as a prect
specification of what is detectable. A fairly complex arrangement of equipment was used for the preliminary
listening test. The record player under listening test. The record player under
test, its amplifier, and a loudspeaker
were set up in one room with a second loudspeaker and amplifier system reproducing the programme in another
room acoustically isolated from the room in which the turntable system was operating.
Thus the amount of breakthrough signal could be altered by increasing the gain of the amplifier driving the loud-
speaker located near the record player speaker located near the record player
without its producing any significant without its producing any significant
increase in the loudness of the signal reproduced by the second loudspeaker system in the adjacent listening room. Speech and various types of music were
then reproduced and the amount of then reproduced and the amount of
acoustically induced breakthrough slowly increased until the effect was just detectable to the listener.

Level of acceptability

As might be expected, the break-
through was not really a serious prothrough was not really a serious pro-
blem when reproducing most music. The breakthrough signal could be increased until it was only $3-6 \mathrm{~dB}$ below the programme level before its effects were audibly detectable but the exact amount that was detectable was a function of the type of music being
played. When reproducing speech the results were very different. Colouration could be detected when the breakthrough voltage was $10-15 \mathrm{~dB}$ below the basic speech signal. If a safety margin of
5 dB is allowed then we can specify that if a record player is to be acceptable the distortion voltage acoustically induced into the pickup should be more than 20 dB below the signal output voltage from the pickup when replaying a 1 kHz recording
$5 \mathrm{~cm} /$ second. The limited listening tests we made
rather suggest that the acceptability of this breakthrough distortion is inversely proportional to frequency, at least
in the frequency band below about 600 Hz . Breakthrough in the $500-800 \mathrm{~Hz}$ band is much more obvious and annoying than the same amount of the distortion in the $50-100 \mathrm{~Hz}$ band. Any
final objective ranking requires the establishment of a weighting curve relating 'acceptability' or 'annoyance' to frequency.
The breakthrough voltage from the sign of the turntable and
assembly and the level of the acoustic specify that the acoustically induced specify that the acoustically induced
breakthrough voltage must be at least 20 dB below the signal voltage we can
specify the maximum sound level that is specify the maximum sound level that is permissible for any particular turn-
table design before the breakthrough table design before the breakthrough
exceeds this limit. High values for the permissible sound level indicates a well designed turntable.
Our investigation was directed. towards ranking the performance of several turntables from one manufac-
turer and not to a ranking of many of turer and not to a ranking of many of cannot quote specific permissible levels for a wide range of turntables. Some
turntables in the $£ 50$ to $£ 80$ price turntables in the $£ 50$ to $£ 80$ price bracket reached the -20 dB limit when
the sound level at the turntable reached 86 dB , whereas with others in the same price class a sound level of 95 dB was permissible. Some of the professional could withstand sound levels in class of 95 dB before the - 20 dB breateess level was reached. The Technics 1800 turntable we use in the laboratory reproducer system could tolerate a point was reached. point was reached.
In an ordinary
a sound level of 90 dB in the vicinity of the turntable would imply a sound
level about $10-12 \mathrm{~dB}$ higher at a point 10 level about $10-12 \mathrm{~dB}$ higher at a point 10 feet away where the loudspeaker might
be standing. Thus if we assume that the listeners are seated near the turntable and are also about 10 feet from the loudspeakers then the specified acceptable breakthrough level is also the
maximum listening level that is permis maximum listening level that is permis-
sible before acoustically induced breakthrough needs to be taken into account.

A simple test

Few listeners will have access to the technical equipment necessary to measure the performance of their own
record player but there is a very simple record player but there is a very simple
test of acceptability that can be carried out without any equipment. Play a record of a concert orchestral work and adjust the-amplifier gain to that giving
the maximum sound level you tolerate the maximum sound level you tolerate
in ordinary usage. Stop the turntable, put the pickup in an inside groove and,
using the same amplifier gain setting
|gently tap the top of the deck. If the you certainly need to take some correc itive measures. If you hear a recognis 'able reverberant tone that is sustained impact you can expect that the acoustic 'breakthrough will introduce some col ouration into speech and perhaps music If the gentle impact does not result in a sustained tone, but only produces a
'tap' noise for a fraction of a second then no remedial action is necessary. Ou somewhat limited experience suggests that if the loudspeakers are more than
six feet from the turntable only the worst of the current record players will duced effects. Corrective measures, if necessary, are generally fairly simple.
All the breakthrough effects can be minimised by reducing the sound level minimised by reducing the sound level
at the turntable surface, the simplest procedure being to separate the loudspeaker and turntable by the maximum amount. This is an effective method of
increasing the attenuation of the feedincreasing the attenuation of the feed-
back path. Mounting the loudspeaker on the same table, or the same shelf, provides a direct route for the trans-
mission of mechanical vibration the speaker enclosure to the turntable
and has obviously to be avoided. If a shelf or table must be used to support the equipment, it should be of the minimum possible area. Standing the unit or loudspeaker on a piece of soft foam at
least four inches thick effects a significant reduction in the induced noise, but this is not a very practical suggestion. However, it allows a quick and simple method of checking whether acoustically induced vibration is being
transmitted from the table or shelf to the player.

Single-sideband for land mobile radio demonstrated

To create more channels for land mobile radio, single-sideband operation at v.h.f. is
the "most the "most promising" technique from both according to Graham West, marketing director of Pye Telecommunications Ltd. London of a pilot carrier s.s.b. system developed by Pye in conjunction with Philips Research Laboratories and Mullard Applicica-
tion Laboratories. The system allows tion Laboratories. The system allows a
channel spacing of 5 kHz , a figure which Mr West said the Home Office had encouraged
them to aim at, rather than 6.25 kHz them to aim at, rather than 6.25 kHz (a
halving of the existing 12.5 kHz channel having of the existing 12.5 kHz channel
spacing) because "it fits in better with international requirements."
Witnesses of the
Witnesses of the demonstration toured
rund the Swiss Cotter round the Swiss Cottage area of North Lon-
don in a motor coach listening to switched comparisons of speech on the pilot carrier s.s.b. with the same speech on conventional two transmitters were in a nearby hotel, and both carrier frequencies were 85.875 MHz . In the s.s.b. transmitter the peak envelope
power was set equal to the carrier power of power was set equal to the carrier power of
the f.m. transmitter. In general the listeners preferred the speech quality and intel-
ligibibity of the fm at the higher signal evels ligibility of the f.m. at the higher signal levels
of around $10 \mu \mathrm{~V}$ at the receiver, but between of around $10 \mu \mathrm{~V}$ at the receiver, but between
about $0.3 \mu \mathrm{~V}$ and $3 \mu \mathrm{~V}$ they preferred the s.s.b. because the effects of fading were less pronounced and intelligibility was better. Over-
all, Philips claim that the s.s.b. is "generally preferred".
preferred". by multi-path propagation as the vehicle moves through a built up area producing numerous reflections. An a.g.c. . system is
called for but this cannot operate from the called for but this cannot operace
signal envelope in suppressed carrier s.s.b. because the pauses in speech cause interruptions of the a.g.c.s. signal - which of course
must be continuous to be effective. Pye/ Philips tackle this spoblem by transmitting a
pilot carrier at -10 d relative to peak envepilot carrier at \rightarrow lodB relative to peak envelope power, extracting this in the receiver by
a crystal filter with a bandwidth of only a crystal filter with a bandwidth of only
300 Hz and using this signal in a fast acting a.g.c. system with a time constant of 20 ms to control the gain of the r.f. amplifier. The pilot
carrier is also used for demodulation. This system controls fading up to a frequency of 50 Hz and is claimed to be adequate for use up Whereas suppressed carrier s.s.b. demands a heqeeas suppressed carrier s.s.b.b. demands
say that their pilot of carrier sys, sye Pyemhilips

Literature Received

Full range of over 300 power supply units shom Coutant is illustrated and described
Electronics Ltd, available from Coutant 3 Trafford Road, Reading RG1 8JR

Leaflet describing a range of broadcasting "Mullard Broadcasting Tybes" and is ntitle able from Department C1H, Mullard Ltd Mullard House, Torrington Place, London
WCIE 7HD

Catalogue of hand tools for electrical and
electronic work is produced by A. B. Enelectronic work is produced by A. B. En-
gineering Coo., Apem Works, St. Albans Road gineering Co., Apem Works, St. Albans Road
Watford, Herts WD2 4AN WW 411

Catalogue of mercury-wetted-contact relays y Elliott describes, in addition to the variou types of relay, protection circuitry, P.O.
specifications and mechanical and electrica characteristics. Associated Automation Ltd
70 Dudden Hill Lane, London NW 10 1DJ

Wire strippers, both manual and automatic wire cutters and p.c. board cleaning brushes y Eraser International are described in Court Parade, East Molesey, Surrey KT89HB

Specification sheet describing the PAAutomatic Measuring Set for p.c.m
telephone channels is obtainable from Wan del and Goltermann, Postbox 45, D-7412 Eningen, u.A., West Germany

Catalogue from Radiatron describes apanese "comprehensive insulation di pacement connector facility" - flat con-
nectors - together with accessories and nectors - together with accessories and
tools. Radiatron Components Ltt, 76 Crown
Road, Twickenham, Middx WW 415
Transducers for measurement of level Transducers for measurement of level,
pressure, acceleration, liquid density and
vibration briefly described in Bell and Howell's short catalogue, which can be
obtained from Lennox Rad, Basingstoke,
Hants RG22 4AW WW 416
Leaflet giving details of courses in safety afety Management, is published by the Safety Management, is published by the
British Safety Council, $62-64$ Chancellor's
Road, London W6 9 RS

British Standard BS3549, Part 1, "Methods of eeasuring and expressing the performanc of television receivers,", is now available at a
cost of $£ 12$ from BSI Sales Department, 101 cost of $£ 12$ from BSI Sales Departm
Pentonville Road, London N1 9ND.

Soldering irons, both thermally-limiting and ree-running," types, together with a stan and a selection of bits, are described in
leaflet from Tele-Production Tools Ltd Stiran House, Electric Avenue, Westcliff- -n-
Sea, Essex SSO 9NW WW 418

WIRELESS WORLD. JUNE 1979

The 1979 Paris Components Show, held under the patronage
of Groupement des Industries Electroniqueses, opened its doors the public, from 2 to 7 April.
More than 1,500 companies from 31 countries exhibited (about 200 more than at the 1978 show) ccupying an area of some 36,000 square metres of the exhibitio
site at Porte de Versailles. Nearly 91,000 trade visitors eceived permanent entrance cards and computer analysis of hat the area of greatest interest (predictably) was in components.
This conclusion was based upon responses indicating that 71.9\%
 non-French visitors put
components at the top of the importance list.
According to an opinion
census taken at the show, the census taken at the show, the
second most important area was that of measuring instruments with 41% of the French and 27% of other nationalities declaring a
specific interest - the difference may or may not be significant. Breakdown by professional groups showed that 28% of all
visitors were involved in communications; 19.1% were concerned with radio and tv,
13.8% with business described in the official hand-outs as "hi-fi electro-acoustic", the remainder being active in space aeronautics
(surely "astronautics"?), automobile, watchmaking, photographic, cinema, medical lectronics, toys, data processing This year's show appears to have presented no outstanding innovations or technical sur-
prises. In previous years it has

WIRELESS WORLD. JUNE 1979
radio equipment. The 03 series of 1.s.i. circuits results from three
years of research into digital filtyears of research into digital filt-
ering techniques, and through them the company claims the capability to operate two-way
exchange of data over high noise radio and telephone links. Unquestionably this international exhibition, covering the
whole spread of electronic devices and equipment helps to boost the world electronics trade,
and especially the French components industry, Informed opinion suggests a general rise in demand for components in coming year, and a 16% increase coming year, and a 16% increase
in sales of semiconductors alone.
he F to this is the fact that bot Thomson-CSF and RTC are to be unded by the French government in bipolar development,
while Motorola enters the scene again in the form of a link-up
with EFCIS (a Thomson-CSF subsidiary) in m.o.s. production. No single aspect of the world
electronics industry necessarily electronics industry necessarily
depends upon such depends upon such giant
exhibitions for growth, but it must surely be the French indus-
try's bigest market place. try's biggest market place. The next Paris Components
Show will he held at Porte de ersailles from Thursday, March unive, but closed on Sunday March 30.

Photomultiplier power supply | Specialists in high voltage power | 2.5 kV . Maximum output current |
| :--- | :--- |
| supplies and static inverters, | |

New products seen at the Show
supplies and static inverters,
Brandenburg Ltd. introduced heir new range of photomultiplier power supplies at the show.
The "Double C" series features boosted output current ratings, mprovement in stability at 1 part improvement in stability at 1 part
in 10 against a $\pm 7.5 \%$ mains change. There are three basic
models in the new series the models in the new series: the
378 R with an output voltage 378 R with an output voltage
range of 600 V to 1.2 KV , the 483 R giving 10 V to 2.1 V and the 486 R
providing the range 410 V to ively. All models are equipped with push-button output selec sets fine calibration adjustment and each unit is fully protected against overload, short-circuit of
output terminals in addition atput terminals in addition Units can be revock-mounted (standard 19in) or equipped for
bench-top use with the aid of fold-away feet. Brandenbur Ltd., 939 London Rd., Thornton
Heath, Surrey CR4 7 JE Heath, Surrey CR4 TJE.

Low noise f.e.t.
The CM860 is a very low noise n-channel junction f.e.t. which
the manufacturer, Teledyne the manufacturer, Teledyne an advance on the standard 2N6550. The device is TO-72
packaged and uses a fourth lead packaged and uses a fourth lead
which grounds the case, isolating
it from the gate. Reduction of stray capacitance is the intentio behind this move in order to give

Magnetic ticket head
Growth of automatic systems
using magnetic characterusing magnetic character-
sensing methods such as toll gates, banknote dispensers and
railway arriers railway barriers has resulted in
Thomson-CSF subsidiary com-Thomson-CSF subsiary com-
pany introducing an improved
Fent Ferrinox R head for the purpose. The CMC7 magnetic character
reader is intended specifically for reader is intended specifically for
banknotes, and it is claimed that the new head offers the advan
Twin-channel, twin-trigger oscilloscope Two-channel oscilloscopes with
triggering on only one of the triggering on only one of the
channels are commonplace according to Philips Test and Measuring Instruments. Their
PM 3207 automated twinchannel scope offers full twin channel triggering facilitities,
eliminating the need to switch eliminating the need to switch,
cables if triggering from another source is required. The instrument offers 5 mV per cm sen-
sitivity (15 MHz bandwidth) and sitivity (15MHZ bandwidth) and
it is claimed that even with weak
the designer greater freedom possess all the other advantage of the 2 N 6550 including the low
input noise figure, being 1.4 n input noise figure, being 1.4nV
$\sqrt{\mathrm{Hz}}$ at kHz Another commo feature is a minimum g_{m} of 25000 umho, assuring a voltage gain of
at least 25 with a $1 \mathrm{k} \Omega$ drain load at least 25 with a $\mathrm{lk} \Omega$ drain 1 load
Teledyne Crystalonics, 1300 Terra Bella Avenue, Mountai

d.
tages of uniform electromagnetic performance and general mag
netic characteristics which remain unaffecteded by the amount
of wear of the head's active fan of wear of the head's active face.
A very uniform air gap geometry A very uniform air gap geometry
and improvements in the struc and mprovements in the struc
ture. of the facing material ar
features features responsible for the
improvements. LCC-CICE, Galimprovements. LCC-CICE, Gal-
lieni i, 36 Avenue Gallieni, 93170 ,
Bagnolet, France. signals on acceptable sen
sitivity of 50 or 500 mV per division will be realised. This applies sion wil be reaised. This applies
both to X and Y functions, once
again obviating again obviating the need t
change cables during an experi change cables during an experi-
ment. Auto-triggering is included ment. Auto-triggering is included
so as to ensure that the trace
never leaves the screen - a feanever leaves the screen - a fea
ture which will be of use to busy ture which will be of use to bus
test engineers or novices unac
customed to oscilloscopes. customed to oscilloscopes. N.V.
Philips Gloeilampenfabrieken,
Findhow Philips Gloeilampenfabrieken
Eindhoven, The Netherlands.

u.v. radiation for 30 minutes, although storage is normally
non-volatile, data being retained When power is removed. oincidentally, the news was sponea, ald huring the exhibition,
confed hat Motorola and Fairchild have nade a deal with General Motors
to supply about five million 6802 microprocessors and memory parts in relation to new US
government regulations con. overnment regulations con-
cerning exhaust emission control. There is little doubt that, with rumours that Ford are equally interested, the atmosphere at
the show was indicative of an
opening market for e.p.r.o.m. manufacturers Microprocessors in measure-
ment and automatic testing were evident and frequently demon-
strated although the language barrier seemed often to prevent a continuous exchange between the stand. This also applied to the display cards and especially to stand literature - thick lumps all courage persistence in the English-speaking visitor, which may be deplorable in terms of the
relations of the British with their European cousins (many of whom speak very good English), ut it's not very professional. obvious demonstrations did so with imagination, many stands literally humming and flashing
with both serious and trivial demonstrations of machines under the control of one chip or nother - waving Lissajous fig-
ures converted to back projecures converted to ack projec-
tion and synthesised audio
"ingles" among the more lurid "jingles" amo
phenomena.
phenomena.
Anyone searching for a partiAnyone searching for a parti-
cular national identity in exhibits or instruments would have been
disappointed. Bruel and Kjaer isappointed. Bruel and Kjaer
(France) were quite naturally concerned with the finest detail of accuracy represented by their new range of frequency response
checking and logging equipment,
but there was no marked increase but there was no marked increase in hand waving (technical gesumer Microcircuits Ltd.) a sritish company, demonstrated creditable reserve in outlining
the salient points of a new range the salient points of a new range
of 20 i.cs designed for tone selec-

Double-sided floppy

 disk system Offering storage for more than amillion bytes and over two million with the addition of an optional dual-drive expansion
unit, Motorola Microsystems unit, Motorola Microsystems
Exordisk III essentially provides a removable store for Motorola's Exorciser, Exorterm and Micromodule products. The unit con-
sists of two double-sided, single density drives in a compac
cableard and interconnecting cable assembly from the control
ler to the disk drive unit. Circuitry is included for protection oo
master disk programs, and the master disk programs, and
drive encosures contain power
supplies for all voltag supplies for all voltage require-
ments. The main features include ments. The main features include
512 k bytes per diskette, in 154 tracks with 22 sectors per track
and 128 bytes per sect and 128 bytes per sector. Motor-
ola Inc., Semiconductor Product ola Inc., Semiconductor Product
Division, P.O. Box 8,16 Chemin de la Voie-Creuse, 1211 Geneva
Switzerland. de la Voie-C
Switzerland.

Sound power processor

relationship of unusual power and room acoustics is a Sound Power Processor duced at the Paris Show by Bruel and Kjaer, can provide thi with a mathematical relationship comparing the sound pressure
from an audio source within room to a quantity known as the "room correction term". Given any two of these quantities the third can readily be calculated termined either quantitatively from the reverberation time, room volume, total surface area,
wavelength of the sound being checked and the barometric pressure, or experimentally by using a source of known power
output. Comparisons are
achieved by reference to octave or third octave bands, and the
unit contains 21 third octave filters in the range 100 Hz to 10 kHz (centre frequencies) which can be combined to give 7 ?
octave filters from 125 Hz to 8 kHz (centre frequencies). An 1.e.d.
display provides isf the room correction term as well as the centre frequency to which
it is related, with each rang it is related, with each range
being selected by flick switch. Input is via a multiplexer or microphone preamplifier with
the microphone mounted the microphone mounted on a
swinging boom. Digital output is
sia via an IEC standard interface permitting connection to any
other IEC compatible peripheral such as the alphanumeric printer type 2312, Bruel and Kjaer
(France), 38, Rue Champoreux (France), 38, Rue Champo
91540 Mennecey, France.

Economics

When the pound was worth twenty bob and when each sheikh only had one
Rolls-Royce for each wife; before inte-Rons-d
grated circuits coloured the world dark grey and before inflation turned Impressionists into hedges, it was possible for this journal to respond with careless abandon to requests to publish
a design for an oscilloscope. Or a signal generator, or any reasonably advanced piece of measuring gear. Nowadays, all we can do is mutter gloomily about its not being economically viable meaning it would cost too much. The
process was even under way when we process was even under way when we
designed an oscilloscope about fifteen years ago. We chose a tube and pub-
lished the design, only to find that the lished the design, only to find that the makers promptly put the tube price up
by about 100%, so we chose another and the same thing happened.
We still receive letters asking us to publish another oscilloscope design, but on looking at the on-off prices of tubes, printed-circuit boards and all the other
odds and ends, we still have to say that such a project would cost only a little less than a commercial instrument. There is the satisfaction of building one's equipment, of course, but the price of ego-boistering is going up a
the time. It's possible that a home-built instrument with a very advanced specification would cost considerably less than a commercial design of the same type, the
labour cost of design having been labour cost of design having been
eliminated - or rather absorbed by our publishers. But an oscilloscope costing, say, $£ 500$ still represents a pretty heavy sum of money for an a mateur to lay out, even though the instrument performs as Ican proe no so solution unit unless there are one or two affluent souls out there who would consider spending several hundred pounds on
what is, for many readers, a hobby. what is, for many readers, a hobby
People spend that kind of money on computers, after all.

Three-piece

microprocessor
jt may be considered backward of me, but I had not yet given much thought to
the problem of which microprocessor I ought to select to control my next new suit. I am accuustomed (if once every ten years can be considered habit-forming) to demanding of my tailor that he build last one, since that had been relatively reliable, and the question of controlling the thing has, frankly, not been uppermost in my thinking.
But'I see nqw that a 12 -bit microprocessor is going to be used in the
space shuttle programme "to provide space shutte programme "to provide
full monitoring of space suit and astronaut conditions". Furthermore, this particular piece of gent's business wea

system sewn into the lapels, as it were. It makes the decision on whether to have two or three buttons on one's
sleeves look a bit sick, and I do believe that having on one's chest a display of one's conditions would not go down at all well with the well-dressed man in the average street. "Two stone overweight information most people would like bandied about by street urchins.
But the real point about this space suit, if I may abandon the facetiousness for a moment, is its function of
replacing the umbilical space-walking cord normally used to keep the astronaut alive and to prevent him nipping off on his own as a kind of minor heavenly body. I mean, it's all right giving the poor chap a box of elecair lock with a light-hearted slap on the back and a "Don't be long - I'll have the kettle on", but how would you like to place your chances of remaining in the of a bit of electronic gizmology? Couldn't he at least be given a bit of elastic?

Bull's eye, my eye

To mix a metaphor, purple isn't everyone's cup on this is especially true when a manufacturer leads off into reams of violet verbiage largely unrelated to the item or equipment he is attempting to sell. A few weeks ago spoted a very table unit which, among other extraordinary claims, maintained that the "platter represents impeccable concentricity."
My point is this - the outer rim and any inner circular points or the centre
bearing itself either have a common centre or they don't. Degrees of concentricity are, I'm afraid, as with degrees of "uniqueness", neither accurate nor semantically acceptable expressions. While it is true that there are
organizations working in the interest of the consumer on a direct price or value basis, and the Trade Descriptions Act spreading its umbrela some hat
seems to be no way in which the hormeaningless drivel, short of libellous lampoon or outright derision.
The advertising standards people often point out that they are vigilant,
but like the calculated irrelevancy. which gets voiced in court as evidence and is then officially stricken "from the record", the essential damage forges ahead unchecked, mainly due to the fact that any opposing action is always
considerably in arrears. A united front is def
A united front is definitely needed
here, otherwise we may even find a plus or minus figure creeping into the already bewildering welter of audio and hi-fi specifications. "Furthermore, if we look at the term "represents" in the
main claim to concentricity, it is highly unlikely that $W W$ will consider mounting a competition to find the platter most deserving of the title "represen-

Steady, chaps

Although I've attempted to take a rise microprocessors and 64 K memories, it would be foolish of me to deny that $£ 70$ million is better than a thump in the eye with a piece of wet cod. But the money must be used imaginatively The only really effective way of putting this money to work is to decide,
before any of it is spent, what results specific, not general ones - you want to achieve. That may very probably sound fatuous, but governments are positively
brilliant at frittering away as everyone must surely realise, by now. The decisions on which part of the market to aim at must come from engineers and marketeers, not politicians - our recent history is littered with been forcibly shot down for political reasons.
Once having taken the decisions,
all the money must all the money must then be allocated to
the companies selected to carry out the the companies selected to carry out the
development and production. There is no room for oddball notions here. If it is open for any hare-brained inventor to send in an application for five thousand quid to market a microprocessor-
controlled ludo game or electronic catdoor, sure as little apples some government clerk will think it's a super idea and shell out.
To forestall aggrieved proponents of free enterprise telling me that the Spit-
fire would never have been designe under the above scheme, that is taken care of by allowing practical people to make the decisions, rather than waiting for ludicrously impractical government specifications
little enough when compared with the amounts invested by American and Japanese companies - if it is squandered we might as well all go home and
take woodwork.

ELECTRONCCOMPONENTS AND VARIOUS TESTERS

- electrical indicating meters - vom multi testers PANEL METERS
battery Testirs
BATTERY TESTER
CLAMP METERS
HIGH PERFORMANCE! PROMPT DELIVERY! COMPETITIVE PRICES!

WHAT MORE DO YOU WANT?

Hung Chang, world's largest independent manufacturer \& ex porter of Meters and Testers, has production capacity of more than $1,000,000$ Meters per month. You will be completely satisfied with our products that have been exported to more than 35 countries and made by our 1,200 workers with special care. Please contact us and you will know Hung Chang

HC. HUNG CHANG PRODUCTS CO., LTD.

 HEAD OFFICE \& FACTORYADDRESS

Seoul, Korea
C.P.

"HUNGPROCO" SEOUL
"389.011/2, 389.7001/3, 386-6001/5
ELECHCP K28447
ww - 074 FOR FURTHER DETALLS

MABLLINGADD.
MAILLING ADD.
CABLE ADD.
TELEPHONE

ARMON PRODUCTS LTD COTTRELI HOUSE LTD. 53-63 WEMBLEY HILL ROAD WEMBLEY MIDDX. HA9 8BH TEL: 01-902 4321

MICROCHIME
FROM THE INVENTORS
OF MICROPROCESSOR MUSICAL CHIMES New price for the original

CHROMA-

CHIME KIT
24 tune model!
Due to the fantastic success of this product right across the World we are able to offer it at

$$
\text { only } 89.95+75 p \text { p\&p }
$$

Comes complete with

* TMS1000 Micro * Fully prepared PCB * Superb cabinet * All semiconductors $\begin{array}{lll}\text { * All R's \& C's } & \text { * Loudspeaker } \\ \text { * Switches \& pots } & \text { * Socket \& Hardw }\end{array}$ * Fully detailed kit manual

TMS 1000N - MP0027A Micro computer chip available separately if required. Full 24 tune spec device supplied with data, sheet and fully guaranteed.

New low price only $£ 4.95$ inc. p\&p (Only present 24 tune reperteire currently available.) A COMPLETE KIT FOR THE NEW MICRO
CHIME
This easy to
build kit includes:

* TMS 1000 Custom MPU Chip
* Special purpose designed case
* All transistors, Resistors and Capacitor
* Full set of mechanical parts
* Smart fascia labels
* IC Socket and Loudspeaker

Really Low Price!

$$
\text { only } £ 8.95+55 p \text { p\&p }
$$

$$
\begin{aligned}
& \text { AL CHROMATRONICS PRODUCTS } \\
& \text { SUPLLED WTHMNEY ACK GUARANEE } \\
& \text { PLEASE ALLOW T-21 DAYS FOR DELIVERY }
\end{aligned}
$$

Please send me: TO: CHROMATRONICS, RIVER WAY, HARLOW, ESSEX. UK

 NAMEADDRESS
I enclose cheque/PO value $£$
or debit my ACCESS/BARCLAYCARD account no.
IIT|T1|
CHROMATRORICS

ELF II BOARD WITH VIDEO OUTPUT NON ONLY女79-95

то: NеwтвоNics

THE Sorwhere tha m

 ${ }^{\text {Basic }}$ RACA 1802 Usorr' Mamual

$$
\begin{aligned}
& \text { or charge } \\
& \text { Barclayard No. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Barclaycard No. } \\
& \text { Accoss Card No. }
\end{aligned}
$$

signatur

Hours thusiness Monteri 9 30.5 30. Sat. 9 30.1.00

L- Telephone orders Accepted $-\frac{01.739}{\mathbf{W} W_{1}-084} \mathbf{1 5 8 2}$ FOR FURTHER DETAIS

IRW wide handwidth linear hybrid amplifiers.

All the advantages and reliability of

 thin-film circuitry and gold metalization techniques.The TRW CA2800 series is the perfect answer when you need really stable linear amplification from $10-400 \mathrm{MHz}$. Applications will be IF amplifiers, local oscillator buffer
amplifiers, fibre optic drivers, laser/LED diodes or drives amplifiers, fibre optic drivers, laser/LED diodes or drives for
accousto-optic modulators - in fact just about any situation where wideband linear amplification is needed.

Just check opposite the module that suits your particular requirements, then contact MCP for the complete data.

ELBAR 98 CROFTON PARK ROAD, LONDON, SE24 PHONE 01-690 1916 MAIL ORDER ONLY ww-077 For further details

FOR POWER SEMICONDUCTORS I)R

INTERNATIONAL RECTIFIER

Diodes Thyristors Fuses for protecting Semiconductors Power Transistors Potted Bridges Solid State Relays
Silicon Stacks Surge Suppressors IN A HURRY! 070-681 4931

HARMSWORTH, TOWNLEY \& CO.LTD Phone: 0706814931 Telex 635091 Albion G Attn: HARMS WORTH

FUTURE FILM DEVELOPMENTS 36/38 Lexington Street, London WIR 3HR Telephone $01-4371892 / 3$ • Telex 21624ALOFFD G
ww - O2s For further details
carbon film RESISTORS
ON BANDOLERS OR PREFORMED 12.5 mm

AERO SERVIGES LTD
'42-44A-46 westboürne Grove
42-44A-46 Westbourne Grove
London W2 5 SF Tel. O1-7275641 Tele

BUILD YOUR OWN
40MHz Counter
Rx Digital Readout 300MHz Prescaler Signal Clarifier

 CX DIGITAL READPlete Kit $544.95+8 \%$ VAT RX DIGITAL READOUT. Model RQ-30M. Small additional PCB
enables sou to modity the Ro- Counter to ocrect for any IF and give enables vou to modify the RQ-3 Counterto to orrect for any II and give
you a display of Rx tuning frequency.
onsolotel VHF PRESCALER Modele RO-10 Soliti-contained in it VHF PRESCALER Model RQ-10 Seli-contained in its own case with its
own power supply. Extends the range of any Frequency Counter to
beyod
 mproves signal readability by suppressing all types of interferencence. Contains HP, L, BP and Notch filiers in various combinations
Remarkable value at only $£ 22.50+12 / 2 \% \mathrm{VAT}$
 nd 10 kHH either CW or or internally modulated with aut
harmonics well into H .
Complete

ww - 016 FOR FURTHER DETAILS

We are the Designer Approved suppliers of f kis for this excellent design. The Author '
reputation tells all you need to know about the circuity and Hart expertise a
not

 REPRRINTS of the 3 articles describing this design 45p No VAT.
REPRINT of Postscript article 30 p N No VAT.
TEST CASSETTE TC1
Special Hart Copyright test tape makesi it easy to set up VU level. head azimuth and
tape speed, vithout est instruments. Suitable for any casserte recorder. Complete
with instuctions $£ 250$ inc V. VFL 910 . Vortical Front Loading Cassotro Machanism. Features include: Tap

OpTIONAL EXTRAS. Set of six knobs. $\mathbf{E 1 . 4 9 \text { . }}$ Auto-stop reed and mounting kit. $E 0.90$.
PLASTIC ESCUTCHEON
Suitable for CRV and CT4 mechanisms. As used on our cassette recorder, complete
with mounting screws $\mathbb{E} 1.99$ plus VAT. CASSETTE HEADS
Alarge range of cassette heads for domestic, industrial and audio visual purposes is
vailable from us. The very best stereo head that we can find is our HS 15 Sendus Alloy Super Head. This has an even better high frequency response than our HS1 thich it replaces. Unlike cheaper and ferrite types this excellent high frequency
eeformance is combined with a high output, thus maintaining the best possible

LENCO CASSETTE MECHANISMS
We hold stocks of a range of Lenco tape transports for all uses, we can also supply

CASSETtES

Sur laboratory tests on recorders. made us realise how important the choice of
assete is .Wow and tluter is obviously aftected by the qualityo t the housing but the pignal at the same elevel on two different cassettes one of which will reolay ata V U
 These tests enable us to offer what we think is the best v
Super erric Cigh Energy Low Noise formulation.
$\left.\begin{array}{l}\mathrm{c} 9080 \mathrm{p} \\ \mathrm{C} 60 \text { 60 }\end{array}\right\}$ Complete with library case and index card
C10 35p Complete in library case. Suitable for Micro Programming.
Please send 9x4 SAE for lists giving Afiler dotatais and \qquad
HART ELECTRONICS
Penylan Mill, Oswestry, Salop
Personal callers are always welcome
but please note we are closed all day Saturday

NRDC-AMBISONIC UHJ

\therefore -

SURROUND SOUND DECODER

The first ever kit specialy produced by Integrex for this British NRDC backed surround sound system which is the result of 7 years research
 , but viris selections in in linar throughour and does not rely on listener fatiguing logic enhancement techniques. Both 2 or 3 input signa
The decole is
output signals are provided in this most versatile unit. Complete with mains power supply, wooden cabinet, panel, knobs, etc.

Complete kit, including licence fee $£ 49.50$ + VAT or ready built and tested $£ 67.50$ + VAT

NEW S5050A STEREO AMP

50 watts ims-channel. 0.015% THD. $\mathrm{S} / \mathrm{N} 90 \mathrm{~dB}$, Mags $/ \mathrm{n} 80 \mathrm{~dB}$.
Tone cancel switch. 2 tape monitor switches.
Complete kit only $£ 63.90$ + VAT.

Wireless World Dolby ${ }^{\text {® }}$ noise reducer

Trademark of Dolby Laboratories Inc.

Featuring:

- switching for both encoding (low-level h.f. compression) and decoding
- a switchable f.m. stereo multiplex and bias filter.
\& provision for decocing Dolby f.m. radio transmissions (as in USA).
no equipment needed for alignent

Ono euipment needed for alignment.
ont suitability for both open-reel and cassette tape machines.

- suitability for both open-reel and cassette tape machines.
- check tape switch for encoded monitoring in three-head machines

$$
\begin{aligned}
& \begin{array}{l}
\text { Typical performance } \\
\text { Noise reduction better than } 9 \mathrm{~dB} \text { weigh }
\end{array}
\end{aligned}
$$

$\begin{aligned} & \text { Harmonic distorion } 0.1 \% \text { at Dolby level typically } \\ & 0.050 \text { oven } \\ & 0.12 \% \text { over most of band, ising to a maximum of }\end{aligned}$
$\begin{aligned} & \text { Signal-to-noise ratio } 75 \mathrm{FBB} \text { (20Hz to } 20 \mathrm{KHz} \text {, signal } \\ & \text { at Dolby level) at Monito output }\end{aligned}$
Dynamic Range $>90 \mathrm{db}$
Dynamic Range >90 d

Also available ready built and tested
Complete Kit PRICE: $£ \mathbf{4 3 . 9 0}+$ VAT $_{1}$

Calibration tapes are available for open-reel use and for cassette (specify which) Price $£ 59.40$ + VAT

Single channel plug-in Dolby (50) PROCESSOR BOARDS $(92 \times 87 \mathrm{~mm})$ with gold plated cont
all components all components
Single channel board with selected fet
Gold Plated edge connector
Selected FETs 65p each + VAT, 110p + VAT for two, $£ 2.10$ + VAT for four
Please add VAT @ $121 / 2 \%$ unless marked thus ${ }^{*}$, when 8% applies (or current rates)
We guarantee full after-sales technical and servicing facilities on all our kits, have uarantee full after-sales technical and servicing facilities on all our kits
you checked that these services are available from other suppliers?

Price $£ 2.40$ VAT ${ }^{*}$
Pars are available with
Price $£ 9.00+$ VAT
Price $£ 9.00+$
Price $£ 2.75$ + VAT
Price $£ 1.75+$ VAT

S-2020TA STEREO TUNER / AMPLIFIER KIT
 SOLID MAHOGANY CABINET
 A high-quality push-bütton
 FM Varicap Stereo Tuner combined with a 24W r.m.s. per channel Stereo Amplifier.

Brief Spec. Amplifier Low field Toroidal transtormer, Mag, input, Tape In/Out facility (for noise reduction unit, etc.), THD less than 0.1% at 20 W into 8 ohms. Power on / off FET transient protection. All sockets, fuses, etc., are PC MOunted for ease of assembly. Tuner section uses 3302 FET module requiring no RF alignment, ceramic IF $88-104 \overline{\mathrm{M}} \mathrm{Hz}$. 30 dB mono S/N @ $42 \mu \mathrm{~V}$ THD 0.3%. Preder. LED tuning and stereo indicators. Tuning range Nelson-Jones Mk. 2 Stereo FM Tuner Kit. Price: $\mathbf{£ 6 9 . 9 5}+$ VAT.

NELSON-JONES MK. I STEREO FM TUNER KIT

A very high performance tuner with dual gate MOSFET RF and varicap tuning, and dual ceramic filter/dual IC IF amp.

Brief. Tuning range $88-104 \mathrm{MHz}$. 20 dB mono
quieting @ $0.75 \mu \mathrm{~V}$. Image rejection - 70 dB . IF rejection
-85dB. THD typically 0.4%
IC stabilized PSU and LED tuning indicators. Push-button
Mono $£ 36.40$ + VAT
tuning and AFC unit. Choice of either mono or stereo with a choice of stereo decoders.
Compare this spec. with tuners costing twice the price.

Sens. 30dB S/N mono@ $1.2 \mu \mathrm{~V}$
Sens. 30dB S/N mo
THD typically 0.3%
Tuning range $88-104 \mathrm{MHz}$
LED sig. strength and stereo indicator

With ICPL Decoder $£ 40.67$ + VAT With Portus-Haywood Decoder £44.20 + VAT

STEREO MODULE TUNER KIT
A low-cost Stereo Tuner based on the 3302 FET RF module requiring no alignment. The IF comprises a ceramic filter and high-performance IC Variable INTERSTATION MUTE. PLL stereo decoder IC. Pre-decoder 'hirdy' filter Push-button tuning

PRICE: Stereo $£ 33.95$ + VAT
S-2020A AMPLIFIER KIT
Developed in our laboratories from the nighly successful switches, sockets and fuses are used for ease of assembly and to minimize wiring Power 'on/off' FET transient protection.

Typ Spec. $24+24 \mathrm{~W}$ r.m.s. into 8 -ohm load at less than 0.1% THD. Mag. PU input $\mathrm{S} / \mathrm{N} 60 \mathrm{~dB}$. Radio input S / N
72dB. Headphone output. Tape In $/$ Out facility (for noise reduction unit, etc.) Toroidal mains transtormer
PRICE: £35.95 + VAT
BASIC NELSON-JONES TUNER KIT $£ 15.70$ + VAT PHASE-LOCKED IC DECODER KIT ... $£ 4.47+$ VAT BASIC MODULE TUNER KIT (stereo) $£ 18.50$ + VAT PUSH-BUTTON UNIT $\mathbf{£ 6 . 0 0}$ + VA PORTUS-HAYWOOD PHASE-LOCKED STEREO DECODER KIT

AURA SOUNDS

THE WERSI SPECIALISTS
announce the opening of their
SOUTHERN SHOWROOM
at $14 / 15$ ROYAL OAK SHOPPING CENTRE PURLEY, SURREY

FOR
 ORGANS D.I.Y. KITS LPs

Catalogues and Price Lists- $£ 1.00$ from
AURA SOUNDS
Copthorne Bank, Crawley, W. Sussex
Telephone: 0342713338

WIRELESS WORLD JUNE 1979

TV TUBE REBUILDING

Faircrest Engineering Ltd., manufacture a comprehensive
range of equinment for pross colour and mono Standard or custom built units for estab lished or new businesses. We export world-wide and have an
excellent spares service backed by a strong technical team.
Full training courses are individually tailored to customers
requirements.
FAIMCRET
FAIRCREST ENGINEERING LTD.
Willis Road, Croydon
CRO2XX. Tel: $01-6898741$
WW - 029 FOR FURTHER DETAIIS
for
$\begin{array}{ll}\text { 1. Carbon Film Resistors } & \text { 6. } 40 \text {-way ZIP DIP }\end{array}$ 2. Display Mounting Boards \quad 7. Square Pad Boards 4. Connector Installation Tool ${ }^{\text {g. KM4 Case-Fra }}$ 5. Scotchflex 0.Miniature Buzzer new products from

Barton Park Industrial Estate, Eastleigh wW - O94 FOR FURTHER DETALIS
OSCILLOSCOPES - FREQUENCY COUNTERS - CRYSTAL STANDARDS
model
S1500
15 MHz Dual Trace £280
 MAINS /BATTERY PORTABLE OSCILLOSCOPE A professional standard model dual trace DC to 15 MHz . Usable to 25 MHz with alternate, chop $5 \mathrm{mv} / \mathrm{cm}$, accuracy 3%. Excellent triggering wide range time base. Natural anodised aluminium case with blue vinyl steel covers,
retractable angled feet, carrying handle.

ELECTRONICS, 6 WOLSEY ROAD, ASHFORD, MIDDX. ASHFORD 53661

NORTH STAR * HORIZON

DOUBLE DENSITY PERFORMANCE
at SINGLE DENSITY PRICES.

* One Double Density Mini Floppy (180K Bytes)
* 16K Fast RAM
* Serial l/O Interface
* DOS/BASIC

HRZ-16W £1265

* Z80A Based S100 Bus Expandable System

Heyco Nylon Terminal Bushings

Heyco have got it made for cables

[5 5 5 5

wW - Os6 FOR FURTHER DETAIIS

WW-O41 FOR FURTHER DETAIS

WIRELESS WORLD, JUNE 1979

Designt
manstallatione $\& ~$
installation

Audix Limited | Station Road, Wenden | $\begin{array}{l}\text { Tel: Saffiron Wald } \\ \text { (0799) } 40888\end{array}$ |
| :--- | :--- | $\begin{array}{ll}\text { Saffron Waiden } & \text { Telex: } 817444 \\ \text { Essex CB11 4LG }\end{array}$

ELalx

Sound \& Communications systems
Please send me details
\square Sound reinforcement
public address equipment
\square Theatre sound equipment
\square Hospital distribution
and
nurse call systems
\square Intercom systems,
\square Hotel entertainment systems \square Simultaneous interpretation and conference systems

Name

Address

A massive hulk purchase hrings you THE HAZELTINE HIIOO STAND ALONE TERMINAL ata stand alone price!!

Purchased from a major manufacturer these brand new and boxed terminals can now be offered at an unrepeatable price. The Hazeltine H1200 offers all of the following features which make it
rame to home M.P.U. systems.

* 1920 CHARACTERS (80×24 LINES)
* V24/RS232 INTERFACE
* LOEAL, HALF OR FULL DUP (110-9600)
* SCREEN SIZE 12" DIAGONAL
* 55 KEY TTY FORMAT KEYBOARD
* AUTOMATIC SCROLL UP
* PARITY ERROR INDICATION
* ASCII CODE
* FULL SERVICE MANUAL AVAILABLE
* 90 DAY PARTS AND LABOUR GUARANTEE

EXPORT AND TRADE ENQURRIES WELCOME
ORDER NOW WHILE STOCKS LAST; AVAILABLE FROM

 entering the reference number(s). Your enquiries will be passed on to he manufacturers concerned and hou can expect to hear from them jour in direct in due course. Cards mom abroad require a stamp. hese Service Cards are valid for six months from the date of publication.
Please Use Capital Letter
If you are way down on the circulation list, you may not be etting the information you equire from the journal as soon as you should. Why not have your own copy?

To start a one year's subscription you may apply direct to us by using the card at the bottom of this page. You may also apply to the agent nearest to you, their address is shown below.

OVERSEAS SUBSCRIPTION AGENTS

 Canado: Davis Circulation
 Cyprus: Genaral Pross

demon Stiteen,
4252B, Nicosia

reputation earned tor tor the design and manutacature of high quat quality trantion eas and orther wosid ments.
Our design team is avaiable to give their personal attention to
customers technical reauirements.
Development and pre-production samples can be supplied by our
.prompt trototype service.
Drake
DRAKE TRANSFORMERS LIMITED Transformers

The measurement engineers.
ww - 032 FOR FURTHER DETAILS

Now... the next generation of bench DMMs! Two New Keithley Models offer uncompromising .performance and outstanding value!

- Accuracy $31 / 2{ }^{\prime 2}$ s can't match $0.04 \%+1$ digit on dc
- vatrs and orms
Large, bright, 20,000 -count LED display that's quick
and easy to read.
- Convenient bench size that won't get "lost" yet
- doesn't crotyd Exceptional reliability.

Enquiry Service for Professional
Readers ONLY.
WIRELESS WORLD
 the apprange for me to receive further details of the products listed, the appropriate reter
space provided.
Name.
Position in Company
Name of Company
Address.

Telephone Number .
Nature of Company/Business.
No. of employees at this establishment

VALID FOR SIX MONTHS ONLY

3½ digit, LCD display DIGITAL MULTIMETER

HANDY - easy to hold, to carry, to use, to read. Always at hand to make difficicult measurements easy.
VERSATLLE-all the functions and ranges you need... 29 in all: volts and amps, a.c. and d.c., switchable Hi and Lo ohms.
TOUGH- built to take the rough and tumble of field service and survive normally disastrous overloads the 935 will stay in cal. PRECISE-basic 0.1\% d.c. accuracy-better than many bench models VISIBLE-big, clear, high contrast $31 / 2$ digit
LCD display, readable anywhere. $1 / 2^{\prime \prime}$ LCD display,
characters.

characters.

EXPANDABLL-accessories extend measure-
ments to 1000 A ments to $1000 \mathrm{~A}, 4 \mathrm{KVV}$, r.f. at 700 MHz or temperature from -60 to $+150^{\circ} \mathrm{C}$.
INEXPENSIVE-the 935 has the lowest price tag of any high performance hand-held DMM at $£ 99$ U.K. mainland delivered exc. VAT. It uses a low cost PP9 battery which can give up to 200 hours use.
See why your next multimeter should be a Data Precision 935!
Get the leaflet now from

Farnell

International
FARNELLINTERNATIONAL INSTRUMENTS LIMITE WETHERBY WEST YORKSHIRE LS22 4DH WETHERBY-WEST YORKSHIRE LSS22 4DH
TEL:0937 63541 -TELEX 557294 FARISTG
OR LONDON OFFICE-TEL:01864 7433
wW-003 FOR FURTHER DETAILS

Why Scopex?

There's a range of answers.
 There's something every one of our scopes has
 Return the coupon for full details of the range

in common. Great accuracy, tremendous reliability and keener pricing, plus free delivery on UK minland.
Take the new 4D-10B. The fully stabilised power supply gives 3\% accuracy. There's a full XY facility for brightening or dimming the trace, 10 MHz scan at full bandwidth over the full screen area, trace locate and TV field trigger. At £188.00* it's astonishing value.

Or the 4D-25. A dual trace model with
$\mathrm{DC}-25 \mathrm{MHz}$ bandwidth and $10 \mathrm{mV} / \mathrm{cm}$ sensitivity. Signal delay allows you to trigger from and see the leading edge of any signal. Trigger level and slope are selected on one dual function control. 3\% accuracy and still only $£ 315.00^{*}$.

Plus the 4 S 6 single beam 6 MHz bandwidth model with easy to use controls. 10 mV sensitivity and timebase range of 1 us to $100 \mathrm{~ms} / \mathrm{cm}$. Lightweight, compact and a very good price. £138.00*.
that gives you a lot more scope.

WIRELESS WORLD, JUNE 1979

TRANSISTORISED DC TO AC INVERTERS

ELECTROVANCE p.o. box 191, London sws ats

COMPUTER APPRECIATION

RH1 4PA. Tel. Godstone (0883) 843221

Test by measuring. Test by viewing. Either way you'll be glad you tried Fuji videotape. From Bell \& Howell.

We could prove the excellence of Fuji videotapes by filling the page with an impressive family of Fuji graphs showing how much better they are than run-of-themill tapes. Instead (because we'd rather convince thousands of video users than a handful of admiring engineers), we suggest you buy a Fuji reel or cassette, then make a recording. That will show how good the tape is when new. Look at the recording again after innumerable replays or - a direr punishment - after an hour's playback in a stop-motion mode. You'll then see how good the tape stays, see how good the tape stays,
how free from drop-outs after exceptionally heavy use.
exceptionally heavy use.
Two things explain this Two things explain this
excellence. There's the excellence. There's the
immense experience in coating techniques of one of the world's leading manufacturers of photographic film - experience which accounts for the good-for the-magnetic-head ultrasmoothness of the surface and the highly durable bonding of coating to base. And there's the pioneering and continuing R \& D of Fuji's outstanding team of physicists - people whose fundamental contributions to the science of ferromagnetism led to Beridox (subject of the
comparison graph above) and comparison graph above) and
the improved Beridox recently ormulated for BetamaxandVHS.

However they're evaluated - by technical criteria ike sensitivity, chroma and S/N ratio or just by looking critically at the recorded picture - Fuji videotapes are among the best in the world. They're available in a variety of lengths for every reel-to-reel VTR, every U-format cassette recorder, for Betamax and for VHS. Each has the specific characteristics required for the job it has to do.
For full specifications and price list, please use the inquiry service. Or mail a letterhead with your name and the name and model number of your recorder, in an unstamped envelope, to Dept FR1, Bell \& Howell A-V Ltd, Freepost, Wembley, Middx, HAO 1BR.
回 Bele

ALL OUR MAIN STOCKS HAVE NOW BEEN SOLD

 Stock not stored at our previous address or purchases during or since the closure order was given could notbe sold from that address. We now offer the remainder of our stock of oscilloscopes, components, general test gear, otc. to the public and dealers. Send for lists. 9p stamp please.
Or Call and See our DISPLAY of Equipment and Components at VERY ATTRACTIVE PRICES. TEKTRONIX 545A with CA from $£ 150$ oach HEWLETT PACKARD 13
SOLARTRON CD 1400 from $£ 150$ each TELEQUIPMENT D33R TELEQUIPMENT D33R
SOLARTRON CT316 at $£ 1680$ each
at
CARRIAGEAND VAT NOT INCluded in prices at $£ 80$ each
at $£ 47.50$ each

A large range of Signal Generators, X - Y Plotters, Components DVM's etc also available CALLERS ARE VERY WELCOME strictly between the hours 9 a.m. to 1 p.m. and 2 p.m. to 5 p.m. Monday to Saturday incl.
BARCLAYCARD (VISA) AND ACCESS WELCOME

ALL INVOICES, ENQUIRIES, ETC., TO OUR TEMPORARY ADDRESS OF

GHILTMEAMLTロ

NORWOOD ROAD, READING

(2nd turning left past Reading Technical College in King's Road then first right - look for "'Spoked Wheel' on right)
TELEPHONE NO. READING 669656

Number $1 .$.

for Professional...

TELETEXT DECODERS

ncluding CATRONICS

 ULTRASONIG REMOTE CONTROL W.W. DECODER

$310]$

 FULLSPEC. PROESSSIONAL
 SPECIALLY REDUCED PRICE of $£ 248+$ VAT $=£ 279$
CHARACTER GENERATOR AND MENDRY I.C.S.
$745262 \mathrm{~N}(\times 887)$ £12.95; 2102.2602, £1.11
 Catronics

Barrie Electronics Lit.
3,THE MINORIES,LONDONEC3N 1BJ
TELEPHONE: 01-488 3316/8

BRIDGES	125MHz Multi-Function Counter 1910A. $£ 199$
GENERAL RADIO	520 MHz Communications
Immitance Bridge 1607A £750	Counter 1920A-06 . £490
Impedance Bridge 1608A $£ 1450$	125 MHz Multi-Function Counter 1925 A I. $£ 405$
MARCONI INSTS.	520 MHz Univ. Timer Counter
LCR Bridge TF2700 £210	1953A-07 £675
In Situ Univ Bridge TF2701	125 MHz Univ. Timer Counter
£395	1953A-15-16 £850
Univ. Bridge TF1313 . £395	PHILIPS
Univ. Bridge TF1313A £790	80MHz Timer Counter PM6612
WAYNE KERR	£405
Univ. Bridge B221 (0.1\%)	1 GHz Timer Counter PM6615
$£ 275$	£795
Univ. Bridge B521 (1\%) £120	80MHz Freq. Counter PM661
Low Impedance Adaptor 0221	£18
£75	512 MHz Freq. Counter PM6645
V.H.F. Admittance Bridge B602	£710
c/w SR268 Source \& Detec-	520 MHz Automatic Freq.
ALIBRATION	0
EOUIPMENT	VOLTMETERS
HEWLETT PACKARD DC Voltage Source \& Differential	MULTMMETER
Voltmeter 740B . . . £850	
DC Voltage Source \& AC/DC	ADVANCE Voltmeter DRM
Diff. Voltmeter 741B £975	True R.M.S. Voltmeter DRM6 $£ 295$
FLUKE	
DC Voltage Calibrator 332A	31/2 digit D.M.M. 8020A £99
£1350	$41 / 2$ digit D.M.M. 8040 A-01
rue R.M.S. Differential Voltmeter 931B . . £1050	$\cdots \mathrm{E220}$
High Voltage Divider 80E £225	4112 digit D.M.M. 8600A £290
High Volage Divider 80E 2225	8800A D.M.M. $51 / 2$ digit $£ 599$
$883 A B$ AC/DC Differential Volt-	HEWLETT PACKARD
${ }_{\text {meter }}^{\text {mentix }}$	$51 / 2$ digit D.M.M. 34702A +
Time Mark Generator $184 \mathbf{£ 2 7 5}$	34740A £295
Time Mark Generator 2901	PHILIPS
¢450	4 digit D.M.M. PM. 2424 £300
5 nS Pulse Generator 2101	41/2 digit DC. D.V.M. PM 2443
£525	£430
Pulse Generator 109 . . £320	311/2 digit D.M.M. PM2513 £90
	31/2 digit D.M.M. PM2513A£95
	Autoranging D.M.M. PM2524 £370
	SCHLUMBERGER-
METERS	SOLARTRON
	$51 / 2$ digit Digital Multimeter
GENERAL RADIO	
	41/2 digit D.M.M. 7050 £350
Portable Sound Level Meter	OSCILLOSCOPE
1933 \& 1935 Portable Sound	cossor
Level Meter with data cassette	35MHz Dual Trace. ÇDU. 150
recorder £2600 £450
	50 MHz Dual Trace. 4000 £495
	$75 \mathrm{MHz} \mathrm{D.T}$.4100 ... $£ 695$
	DYNAMCO
OINTERS	30 MHz . Dual Trace. 7100 ¢ $£ 350$
	40 MHz . Dual Trace. 7500
GOULD ADVAN	¢495
500 MHz Counter TC15 + 15P1	PHILIPS
£495	5 MHz Miniscope Battery/Mains
80 MHz Counter TC17 or TC17A	PM3010 $£ 325$
£195	15MHz Portable D.T. PM3226
10 MHz Counter TC21 , £195	£400
FLUKE	TEKTRONIX
80 MHz Multi-Function Counter	24MHz Dual Trace Bench. 543B
1900A £175	+ CA £350
125 MHz Multi-Function Counter	50 MHz Dual Trace Bench. 647
1910A-01 £285	+ 10A2 + 11B2 . $\mathbf{E 6 0 0}^{\mathbf{0}}$

C.T.ELECTRONICS (ACTON) : imime LTD.
 267 \& 270 ACTON LANE, LONDON W4 5DG. Telephone

DATA GENERAL COMPUTERS
WE HAVE SEVEN COMPLETE SYSTEMS, EACH COMPRISING
Cabinets with power supplies. Fans, mains filter units, 240 V 50 HZ . Nova 820 mainframe 240 V 50 HZ , Nova 820 CPU2 (8207) mult/ div I/O int ($4007 / 4010$) for TTY 32 K word of
Disc pack controller board (4046)
2.5 m byte disc storage system (Diablo) Series 30 (4047A) moving head. Disc power supply (240 V 50 HZ) with adaptor
and logic board (4047). Computer Control Panel. OFFERS AROUND £5000

Simply ahead!

HIGH PERFORMANCE MODULAR UNITS BACKED BY NO-QUIBBLE 5 YEAR GUARANTEE

WIRELESS WORLD, JUNE 1979
U.K. RETURN OF POST MAIL ORDER SERVICE, ALSO WORLDWIDE EXPORT SERVICE

RADIO COMPONENT SPECIALISTS

West Hyde have more than 600 different instrument cases in stock + accessories ${ }^{135}$

RfllO find TELIVISION SERVICING 1978-79 MODELS

Editor

R. N. Wainwright,
T.Eng, (CEI), F.S.E.R.T

This latest volume in the RADIO AND TELEVISION SERVICING series covers more makes than ever before and is divided into two sections: the first group of current colour and monochrome receivers than previously attempted; the second contains a selection from an enormous range of available audio equipment and is extended by a technical description of the Philips 'G11' Remote Control System

The information in this volume continues to provide an invaluable reference book for all service engineers.

£11:50 21 June

Special price for six volume set $£ 50.00$ Consisting of vo.
including $p \&$.
revious volumes still available individually.
From booksellers or, in case of difficulty, please use the form below.
copes send me cos) of RADIO AND Please send me_ copy(ies) of RADIO AND To: The Sales Manager, Macdonald \& Jane's 8 Shepherdess Walk, London N. 1
enclose a cheque/PO made out to Macdonald \& Jane's for

Name
Address

GIRO A/C NO 205/4221 Macdonald \& Jane's
Macionario
$\mathbf{M}_{\&}$
JANETS

FOTOLAK
poshivelich sing tive aenosol lacoue
 Metho spray
required dirutit now sensitized surface. Expose to daylight, develop and etch.
Any number of exact conies can of course be made trom one masier. Widely AAl number of exact copies can
used in industry for protorype work.
fotolak.
Developer
Ferric Chloride

Plain Copper-clad fibre-glass.
Approx $: 3.18 \mathrm{~mm}$ thick sq. ft.

RADIO SHACK LTD for DRAKE

Ham Bands with 1.5-30 MHz receive with built-in 150 MHz freausenccivcounter plusu option of 0-1.
transceiving application $1.8-30 \mathrm{MHz}$.

RADIO SHACK LTD

For Communi
Trio testgear.
We are situated dist around the cormer tom West Hampstad. Undergound Sation
 Is +sepvice
RADIO SHACK LTD
188 BROADHURST GARDENS, LONDON NW6 3AY

ELECTRONIC VALVES

 WANTEDAll Types Receiving, Transmitting, Industrial PL504-PL802 - PCL805-CV131 - CV136 -CV329-CV345-CV45
$807-813-2 K 25$, Etc.

PYPE HAYES RADIO LTD.
YPE HAYES RADIO LTD
606 Kingsbury Road
606 Kingsbury Road
021-373 4942

Introducing the RM 215-F/3, it detects breakdown voltage in a flash.
The RM215-F/3 Breakdown Tester is a compact,
portable simple to use instrument designed for general flash testing and measurement of breakdow voltage of electrical components, electrical
equipment and systems and for leakage current equipment and systems and for leakage current
testing in most modern insulating materials. The instrument provides a continuously variable a.c
test voltage up to 4 kV and breakdown or leakage is test voltage up to 4 kV and breakdown or leakage is
indicated by nilluminated panel lamp and a Ioud
buzzeralarm. This makes the RM215- $F / 3$ equally suitable buzzer alarm. This makesthe RM215-F/3 equally suitab
for 1 aboratory or site work. A special feature of the instruments which possess appreciable capacitance
components The output current is limited for safety and a special
interlock system switches the instrument off in case of failure. The $R M 215-F / 3$ is portable, easy to use, efficient and safe. Why not give us a call and we'll to you have the full facts. You'll never meet a better meter

Avo Limited, Archcliffe Road, Dover, Kent, CTIT 9EN.
Tel: 0304202620 Telex: 96283
$\frac{1}{n o m}$ Thorn Measurement \& Components Division

ELECTRONIC POWER UNITS FOR XENON ARC AND MERCURY ARC LAMPS
UNITS AVALABLE FOR LAMPS RANGING FROM 75 To $\underset{\substack{\text { Lamp huusings an } \\ \text { specific cesign. }}}{\substack{\text { n }}}$

$£ 63.89$

FEATURES

- SIMPLE OPERATION

ERASE TME VARIABLE FROM 5 TO 50 MINUTES
SLIING TRAY CANACOMMODATE UPTT 2 UV EPROMS
SAFETY INTERLOCK PREVNS
SLIDING TRAY CAN ACCOMMODATE UP TO 12 UV EPROMS
SAFETY INTERLOCK PREVENTS ACCIDENTIAL EXPOSURE
GP INDUSTRIAL ELECTRONICS LTD. SKARDON WORKS, SKARDON PLACE, NORTH. HILL

The FM/AM 1000s with Spectrum Analyser A portable communications service monitor from IFR, light enough to carry anywhere and good enough for most two-way radio system tests. The FM/AM 1000s can do the work of a spectrum analyser, oscilloscope, tone generator, deviation meter, modulation meter, signal generator, wattmeter, voltmeter, frequency error meter-and up to five service engineers who could be doing something else!
For further information contact Mike Taylor
ww - 112 For further details

explosion proof communications

* Ex. loudspeakers 12w and 25w * Ex. proof intrinsically safe weatherproof telephone units * delivery ex-stock
complete systems for the offshore - chemical motorway environment

$\approx \approx$

NEUMANN
Neumann Communication Systems Limited Lea Industrial Estate, 151 Lower Luton Road
Harpenden, Herts AL5 5EQ Telephone: (058 27) 67011 . Telex 826638 Ww - 082 FOR FURTHER DETAILS

Appointments

Advertisements acceptod up to 12 noon Friday, June 1 for July issue, subject to space being available.

DISPLAYED APPOINTMENTS VACANT: $£ 8.50$ per single col. centimetre (min .3 cm) LINE advertisements (run on): $\in 1.20$ per line, minimum triree lines.
BOX NUMBERS: 60 pextra. (Replies should be addressed to the Box Number in the PHONF: Bent, c/o Wireless World, Doset House, Stamford Street, London SE1 9LU.) PHONE: Barry Leary o

WE HAVE AN OPEN DODR FOR AN OPENMINI

Test Engineers
Open minds and creative thinking have
made Linotype-Paul the market leader in
the the field of sophistic cated phototypeseretting
equipment for the world's equipment f
industries.
We are leaders not by accident but by
design and in order to maintain our position and our record growth partern
we now have excellent openings tor we now have excellent openings for
electronics engineers at al lievels. If you have an electronic engineering
background coupled with at least 2 years practical experience and/or a formal qualification we'd like to meat you. Anyone with experience in the following
would also be welcome. Prototype Wirers, A.T.E. Engineers, Electronic and Mechanical Inspectors, Skilled Fitters, P.C.c. D. Draughtsmen/wamen, Programmers,
Electronic and Mechanical Development Engineers.
Ring Cheltenham 41441,
reversing charges, or writ
reversing charges, or write to
Patrick Cooper, Personnel Offic
Linotype-Paul Ltd Chell Officer,
Bath Road, Cheltenham.

J/B

Hi Fi and TV Technicians

Owing to continued expansion, JVC require more service engineers at their head office.
Applicants should have City and Guilds Certificates I, II and III and sound experience in repairing the most up-to-dat hi-fi and TV apparatus.
Substantial remuneration, pleasant worki
subsidised canteen plus additional benefits.
Please apply to: Staff Manager (Technical), JVC (UK) Ltd., Eldonwall Trading Estate, 6-8 Priestley Way Staples Corner, London NW2 7AF. Or telephone (01) 4502621.

Linotype-Paul雾

UNIVERSITY OF WARWICK
 ELECTRONICS TECHNICIAN

 Grade 7Required in the Department of Chemistry and Molecular Sciences to
ake charge of a well equipped electronics workshop. The duties include responsibilitit for mainten enecce of both welectricial and electronic
equipment in the Department, design and construction of specialised equipment in the Department, design and construction of specialised
electronic equipment and modification to existing equipment and the
supervision of a Grade 4 Technician employed primarily on repair and supervision of G Grade 4 Technician employed primarily on repair nad
maintenance work. The Department is equip maintenance work. The Department is equipped with a wide range of
scientific instrumentation including mass spectrometers, magnetic
serich sciennate instrements, spectrophotometers and chromatograpaphic
resonance
equipment, and the successul candidate, male or female, will equipment, and the successtul candidate, male or femare, will
probably hold an HNC or equivalent in the field of electronics and have
wide wide experience in the degign and maintenance of complex electronic
equipment. The University is situated in pleasant rural surroundings equipment. The University is situated in pleasant rural surroundings
vithin easy commuting distance of Coventry, Keniluorth and
ieamington Spa. Salary on the Technician Grade 7 scale $£ 4,638$ -
ind
 tions. Apppication should be made by letter giving full dotails and tica-
names and addresses of two referees to the Personnel Office
not names and addresses of two referees to the Personnel Office,
University of Warwick, Coventry CV4 7AL quoting Ref. No. 39/2D; University of Warwick, Coventry CV4 7AL quoting Ref. No. 39/2D
79; as soon as possible.

At ERA we have developed considerable
expertise in all areas of the radio spectrum from dc transients to gigahertz transmission Opportunities now exist for suitably
qualified men and women to contribute their queas in the following areas:
EMC Compatibility
A variety of interesting projects span problems ranging from electromagnetic
interference to microwave frequencies in such diverse applications as civil and military aircraft, military vehicles and weapons systems, marine communications, the offshore
oil and gas industry, ind ustrial telemetry and control, and domestic appliances. Applicants should have a degree or qualifications and some experience in either communications or radio frequency
Antenna \& Microwave Technology Activities in these fields include a wide range
of research, development and evaluation
projects on high performance antenna systems for spaceccraft, satellite, aircraft and terrestrial use; and the research and design of
new types of millimetre-wave components. new types of millimetre-wave components.
Two exceptional antenna and/or microwave engineers are required to complement a team with a growing international reputation. Degree level qualifications would normally be
required although, for one of these posts, consideration will be given to an applican with outstanding peactical capabilitites. Direct experience is desirable but not essential and a
well motivated candidate without experience but with a good electromagnetics or numerica methods background would be given serious consideration.
At ERA you'll find an environment where your deas can flourish. We're a highly creative gnstion run on extremely sound commercial principles and a long way from the We're offering competitive salaries, paths for career development and a wide range of attractive fringe benefits, including. ssistance with relocation where necessary For further details please contact
R. P. Thompson, Personnel Manager lectrical Research Association Limited, Cleeve Road, Leatherhead, Surrey.
Telephone: Leatherhead 73933 .
 Johnstone, Haymarket
Pubbishing Ltd.. Craven House Foubert's Place
London W1A 2HG

Controllers \begin{tabular}{|c|c|}

\hline SOFTWARE \& | Micro- |
| :---: |
| processors |

\hline
\end{tabular}

MECHANISMS
Peripherals

Interfacing

Terminal
Customised Systems

COMMUNICATIONS

Switching
 SYSTEMS
 Consoles

There's real variety at Letchworth $£ 5000$ to $£ 9500$

The Letchworth Development Centre in Hertfordshire is responsible for producing customised computer systems. We are fee either to adapt standard ICL Systems or to produce new As a Design Engineer you will be able to see a proj. from start to finish in a matter of months. Teams are small often single engineer with complete responsibility, and seldom more han three. You will be involved directly with the customer and his real requirement. Responsibility does not end until customer we deal with both ICL and other manufacturers' hardware

Expansion
Expansion
The Centre will expand dramatically during 1979 and will treble acancies for Design Engineers at all levels, both in hardwariate software, especially those able to take over Project Management. Involvement
The attraction is complete involvement with a customer projec including even the business and financial aspects. World-wide
ravel opportunities are excellent. During the last year we have
ravalled customised systems in 26 overseas countries.
We are involved at the leading edge of systems requirements
and technology including aerospace, packet switching networks and technology, including aerospace, packet switching net
applied are microprocessors, voice response the new ICL applied are microprocessors, voice response, the new ICL
Content Addressable File Store, Distributed Array Processing Prestel displays and so on.
ICL is Europé's leading computer Company and offers ICL is Europés leading computer Company and offers
unequalled opportunities in the widest possible variety of career You will probably have a suitable degree or equivalent in electronics or computer science with a minimum of about five years experience in computer applications. However if you are a practical designer with proven experience though without formal
qualifications, we are still keen to hear from you The men and qualifications, we are still keen to hear from you. The men and
women we appoint will be given help with relocation where appropriate. They will also be eligible for our 1979 Productivity
Bonus Scheme.
Please write to John Wells, Senior Personnel Officer
Please write to John Wells, Senior Personnel Officer,
Letchworth Development Centre, ICL, Icknield Way, Letchworth, Herts SC6 1EL; quoting reference WW1196. Or telephone him on

ICL
International Computers

Air traffic Engineers

The Civil Aviation Authority has vacancies
for men and women as Air Traffic Engineers for men and women as Air Traffic Engine
Grade 2 in its Telecommunications Division offering a variety of work on a wide range of electronic systems and specialised equipments.
Air Traffic Engineers Grade 2 are involved in the installation and maintenance of
radio, radar, air navigational and landin radio, radar, air navigational and landing
aids, and data processing systems and are employed at some Civil Airports, Air Traffic Control Centres and Radar Stations and
other locations throughout the other locations throughout the Ue. At
present we have vacancies at Heathrow, present we have vacancies an Heathrow,
Gatwick, Belfast and Sumburgh Airports and other locations in Scottand as well as the London Air Tr
(West Drayton).
Qualifications and Experience
You should be at least 20 years of age and have had skilled working experience in
radio, radar or data processing and preferably obtained eithers the ONC (ENG)
with an electronics bit with an electronics bias or $C \& G$ Telecommunications Technician T3
Certificates or other similar technica qualifications.

Salary Salaries are on an incremental scale
$£ 3890$ - $£ 5763$ (Under review) with starting point dependent on qualifications and experience.
Posts in the London area attract an
additional allowan a additional allowance (Inner London $£ 558$
-Outer London $£ 293$). Grade 1 posts (maximum salary $£ 6957$ under review) are normally filled by promotion from
Grade 2 . Grade 2

$\sqrt{B i}=$
Civil Aviation Authority

SENIOR ENGINEER VTR/ CASSETTE MAINTENANCE
Salary $£ 6,864$ per annum plus productivity bonus
Independent Television News Ltd. has a vacancy for a Senior Engineer
to maintain video cassette recorders. A trial period with electronic news gathering equipment has just started at ITN and the successful candidate will be working in an expanding area of the company's operations, with responsibility for maintaining both E \& G and the
normal TN house cassette equipment. This position will be part of a normal Nouse cassette eequipment. This position will be part of a
total faciities maintenance team working to the highest professional broadcast sta
maintenance.
Candidates should have considerable experience of the maintenance and operation of Sony U-Matic equipment. Similar experience of VCR

Please relephone the Personnel Officer on 01-637 3144 for an
application form, quoting reference no. 83317 .

JVC

Spạre Parts Manager

Owing to rapid and continued expansion, JVC - acknow-
ledged leaders in Hi-Fi and Video - urgently require a ledged leaders in Hi-Fi and Video - urgently require a Spare Parts Manage
The funtion of the Spare Parts Department is to purchase, stock and distribute all the parts required for the servicing of
our total Video and Audio range. our total Video and Audio range.
Applicants, male or female, must have sound experience of spares control and, staff management together with the
ability to maintain and further the relationship with dealer network which is vital to the continued expansion of our business.
Substantial remuneration, pleasant working conditions,
subssidised canteen plus additional benefits.
Please apply to: Staff Manager (Technical) JVC (UK)
Ltd., Eldonwall Trading Estate, 6-8 Priestley Way, Staples Corner, London NW2 7AF, or Telephone (01)-450 2621.

Aerial Engitheers

Our Station Design and Construction Department is committed to a demanding Department is committed to a demanding It has to plan, build and equip newTelevision and Local Radio stations to extend existin engineering the transmission facilities for the fourth Television Channel. There are now opportunities for two Aerial Engineers (male or female, either qualified newly qualified graduates with an interest in Broadcast engineering). The work is interesting and technologically challen and involves the design and specification, acceptance and commissioning of Aerial Systems, high and low power filters, channe combining and separating equipment for UHF, VHF and FM services. You will be based at our Engineering Headquarters at Crawley Court but you will not be office-bound as your work will take need to be fully fit and able to climb and be in possession of a current driving licence. Starting salary will be on a range which rises o $£ 6,066$ per annum (an initial appointment at a lower level will be made for those with more limited experience). We encourage promotion from within and Senior Engineers are currently on a range which rises to $£ 7,172$ per annum. In addition, we offer excellent estaurant on the premises freelife nd personal accident scheme, generourance pension scheme, and long service awards extending the above salary scales. (All salaries are due to be reviewed in July) Re-location expenses will be paid here appropriate. Generous allowances apply whilst awa

Please write or telephone for more information and an application form quoting

The Personnel Officer, IBA Crawley Court, Winchester, Hampshire SO21 2QA. Telephone Winchester 822270

Appointments...

Electronics Engineers

Electronics Engineers are needed at Rank Research Laboratories for advanced
developments in the application of modern electronic systems mainly to the developments in the application of modern electronic
fields of optics, metrology and industrial processes. This work will a atract engineers with ability y inssigital and analogue design
and keenness to exploit the power of electronics in creating new systems in and keenness to exploit the power of electronics in creating new systems in the
fields mentioned. Some of this work will involve the aplication of

Physicist

APhysicist is required for special projects, initially to develop new
manufacturing techniques for manufacturing tech hiquues for optical comp
and or metallurgy would be an advantage.
Good salaries will be offered to suitable candidates and it is Rank Organisation policy to assist professional career development. The company operates a
first-class contributory pension fund and non-contributory life assurance scheme Men and women with a few years' \mathbf{R} and \mathbf{D} experience and a degree Men and women with a few years' R and D experience and a degre
or equivalemt in electronic engineering or physics are invited to
phone or write to the Director Rank Research phone or write to the Director, , Rank Research Latoreratorie
PO Box 33, Phoeni Works, Great West Road, Brentford, PO Box 33, Pheonix Works, Grat West
Middlesex TW8 9AG. Tel: $01-5689766$.

RANK RESEARCH LABORATDRIES
(9222)

DISTRICT WORKS DEPARTMENT ELECTRONICS TECHNICIAN
Applications are invited for the above named post at Kettering General
Hospital for the maintenance of electronic and electro-medical Hospital for
equipment.
The appoint
experience. Electronics Technician Grade IV - Salary scale $£ 3069-£ 4134$ Qualifications: ONC or Full City and Guilds Technological Certificat
plus three years' experience since obtaining these qualifications. Application form and further information from Mr. J. C. Hall, Acting Application form and further information from Mr. J. C. Hall, Acting
Distric Works Officer District Works Department, General Hospital,
Rothwell Road, Kettering, Northants NN16 8UZ. Closing date for applications: 30th May 1979
Kettering миалииозтит
RACECOURSE TECHNICAL SERVICES LIMITED
Our Engineers go places We provide auality colour television with our own
cameras

ASSISTANT

 TV ENGINEERIf you are a Young. fitw. well-educated TV Engineer interested in gaining
exporience in OB operations, maintenance and installations as a member of a
congenial teen

Appointments

to all
 Compułer Electronics Service Engineers.o.

 Move to Linotype-Paul and we'll really put
 moving career prospects, but we'll also throw in a
 company car.
 OK, so does everyone else." you say. "What's
 For a start, we're international leaders in the
 design and manufacture of a product range that's taking the world by storm - computerised phototypesetting
 where you come in.
 Were looking for experienced electronic service engineers, not necessarily in phototypesetting because
 computer technology digital electronics VDUS or other

 Linotype-Paul ${ }^{6}$

MARINE ELECTRONICS We need an engineer familiar with VHF Autopilots, etc, to service and install anywhere, but must be based in London. apply giving able to be your own boss salary required ne ine also prepared to offer an ment, if you are the right arrangeTELESONIC MARINE LTD. 243 Euston Road London N.W. 1.
EIngineers - DESIGN / DEV - TEST - FIELD SERVICE High Salaries - Most Areas Phone 01•7314353 ex/Cex Personnel ${ }^{(8995)}$

M.P.U. SYSTEMS DESIGN ENGINEER

Have you recently qualified, HNC/Degree?
Are you well versed in M.P.U. systems design and practice?
Could you Could you design a complete system (software and hardware)
from initial specifications throuh to from initial specifications through to production?
Would you like to Frankfurt in West Germany? in return we can offer very varied and interesting work allied to rofit sharing and other a friary of $£ 10,000-£ 11000$ p.a. plus interested?

Then please apply in writing giving concise personal details to:
Mr. P. Drury, Director
BARRY NOBLE (COIN MACHINES) LIMITED Sun Valloy House
Ashloy Street, Nottingham NG3 1JG

ASSISTANT ELECTRONICS ENGINEER
 systems, teremery, pAX telephone
system, gas monitoring, smoke de-
Yection and syslem.

Applications to
The General Manager, Dartford Tunnel Joint Commitertee. Durford
Offinel
ofroces, Sount South Orbital Way, Dart

(5A) GAPPTIAL

FREE JOBS LIST
FIELD SERVICE ENGINEERS
BASIC SALARIES TO EAIC SALARIES
E7,000 + CAR

30 Windmill Street, London, w1
$01-6375551$
${ }^{(8781)}$

ATTENTION!

ALL CALIBRATION E TEST ENGINEERS...

Radio Communications Electronics Engineers and Software Designers
Mid-Sussex - S.W. London Salaries up to $£ 7,000$ To join our expanding R\&D Laboratories covering a wide range of R.F
spectrum, from L.F. to V.H.E. Equipments include transmitters and spectrum, from L.F. to V.H.F. Equipments include transmitters and
receivers for marine and land based use, radio navaids and radio monitoring remote computer controlled systems. Electronics Engineers should have experience in transmitter or receiver
design, analogue or digital circuit design, microprocessor applications. design, analogue or digititalircuir design, microprocessor applications
Sottware Designers should be experienced Program mers with an
interest in control, signal processing or navigational software. interest in control, signal processing or navigational software. Atträctive salaries are complemented by excellent prospects and
generous benefits. Contact: The Personnel Manager, Redifon Telecommunications
Limited, Broomhill Road, Wandsworth, London S.W.18. Phone: Contat, Mred Promill Road, Wan
O1-874 7281 (reverse charges)

arororororozorororo Electronic Development Engineer

Cambridge

We now have an opportunity for a qualified and experienced Electronic Design Engineer to join
ur Development Team. The successful applical our Development Team. The successtu applican
will carry out those design operations necessary
in the deveelopment of new electrochemical in the development of new electrochemica
products. These will be mainly analogue products. These will be mainly analogue electronic circuit design requirements in the
initial stages of the development procedure but will extend to cover all aspects of the development operation.
Applicants should have at least two years'
experience in a relevant industrial environment.
Along with a competitive salary we offer many
appreciable fringe benefits including 4 weats oppreciable fringe benefits including 4 weeks
holiday, subsidised canteen and group pension holiday, su
scheme.
Please write or telephone for an application form
to:
Mrs. Jane Wakelin. Personnel Officer
Pye Unicam Ltd

- OEOETOLOEOEIOE

TELEVISION TECHNICIANS

Up to $£ 4674$ p.a. in London + ca (to be reviewed in July)
We are Granada TV Rental, the
country's largest independent TV rental
company and we are looking for experienced
TV Service Technicians to supplement our
teams in London, East Anglia and other areas
of the country.

- Starting salary of between $£ 3915$ to elsewhere depending on qualifications and elsewhere de.
experience.
- A Chevertte Estate that's also available for
full private use.
* Preferentia IV rental terms.
¿ 4 weeks holiday.
\& Sick pay and pension schemes.
- If you:
* Have at least 2 years' practical experience servicing both monochrome and colour servicing
receivers.
Can demo
- Can demonstrate a high standard of proficiency
Then write, giving full details of your . age, qualifications and experience, to R. Grey,
Granada TV Rental, 20 Allhallows, Bedford.
GRANADA
TV RENTAL

Appointments

Electronic EngineersWhat you want, where you want!

TJB Electrotechnical Personnel Services is a specialised appointments service for electrical and electronic engineers. We have clients throughout the UK who urgently need technical staff at all levels from Junior Technician to Senior Management. Vacancies exist in all branches of electronics and allied disciplines - right through from design to marketing - at salary levels from around $£ 4000$ to $£ 8000$ p.a.
If you wish to make the most of your qualifications and experience and move another rung or two up the ladder we will be pleased to help you. All applications are treated in strict confidence and there is no danger of your present employer (or other companies you specify) being made aware of your application

TJB ELECTROTECHNICAL PERSONNEL SERVICES,
12 Mount Ephraim Tunbridge Wells,
Kent. TN4 8 AS.
Tel: 089239388 (TJB

Please send me a TJB Appointments Registration form: Name
Address (9238)

AUTOMATIC TEST EOUIPMENT ENGINEERS
(Digital and Microwave)-Sussex

A.T.E. Programmers and Test Engineers -
to work in a team using GenRad Automatic Digital Test Equipment providing a service to all
departitents
ond

Senior Development Engineer-
 possess a familiarity with programming techniques. The successful applicant will be
responsibie for the evaluation of circuits and components using mettods of automatic test and analysis on He wlett Packard microwave test equipment. These inportant A. T. . positions offer high job inierest and the equipment is the basis of one of Thes it
the mestadvanced mim rowavel /liaitial test facilities in the United Kingdom.
All positions attract excellent startitan salaries generous holiday and sickness entitlements staf All positions strractexceulent slar fing saiares, generous hoiliacy and sickness entitlements, s ta
shop and subsidised restauran facilities. Plea ase write or tele.ephone- Alistair
Sussex. Tel. Crawley 88787 Ext. 3641

OPPORTUNITY IN SOUTH AFRICA Small established mass meterin
ELECTRONICS
TECHNICIAN
st experience desirable
manutacturing
2. Good salary
Warm climate, go
944, Klorksdorp 2570

 Mod

LEPARTME CITY COUNCLIL

 SENIOR TECHNICIAN(Electronics). Ref. 188/10

 courses. Kno
advanage
Appoticaio
Oticer Application forms. quoting reference number, from the Administrative Services
Officr Leeds Polvetechi, Calverley Street, Leeds L SS 13 HE . Otficer, Leeds Polytech nic, Calverley Street, Leeds
Closing date: 14 days atter appearanco of advert.

R\&D Engineers
 ADVANCED RADAR AND RADIO APPLICATIONS

Northern Home Counties

Having recently secured substantial R \& D Contracts in both the Radar and satellite based Navigational Aids field, our Client, the Research Centre of a major of qualified engineers with experience in any of the following disciplines:

- RADAR SYSTEMS DESIGN \& MODELLING
- ANTENNA SYSTEMS (Particularly Arrays)

VHF/UHF/RECEIVER DESIGN

- RF/IF CIRCUIT DESIGN
- HIGH SPEED DIGITAL OR ANALOG SIGNAL

PROCESSING

- MICROPROCESSOR INTEGRATION WITH

RADIO/RADAR SYSTEMS
With access to impressive research facilities, these positions will be of particular interest to self-motivated

to $£ 8000$
engineers seeking involvement with the early conceptual design of novel systems. Every encouragement
will be given to progress proiects through to advanced will be given to progress projects through to advanced
development phases which will require frequent liaison with associated companies in Europe and the USA, possibly necessitating some limited travel. In addition to an attractive starting salary based on experience and qualifications, the company offers
excellent career prospects, generous fringe benefits and relocation expenses wherc appropriate.
This position is open to both male or female applicants and for further information ple
Mr M W Edwards Technical \& Management Recruitment Consultants Business hours Telephone Hitchin 54 Evening/ weekends Telephone Hitchin 4875

ENGINEER £5,000 +
 PRINCIPAL ENGINEER £6-7,000
 TECHM MPERSONNEL TECHNICAL SERVVICES LTD.

BRUKER
 ELECTRONICS ENGINEERS

We manufacture a range of highly sophisticated scientific instruments of advanced design embodying many aspects of the

 advanced design embodying many aspects of thefrom high-power RF to high-speed digital switching
We are looking for first-class Electronics Engineers to carry out
commissioning and after-sales service at customers' premises.
Applicants ideally y will be aged $25-35$, have a minimum qualification
HNC (Electronics) HNC (Electronics) and some industrial experience, preferably in
design/development environment, and be capable of working with design/development
minimum supervision.
The job is both rewarding and demanding and requires a high degree o
technical ability, as well as a keen sense of responsibility salary, expenses and excellent prospects are coupled with an unusua samout of personal freedom.
amount

RECOGNISE IT? Extensive travel in the U.K. is involved with occasional trips abroad If you want a oob which will really give you something to think about, then
apply in writing giving fullest possible details of age, qualifications, apply in writing giving fullest possible details of age, qualifications, career
to date, salary etc, to:

> R. F. Ladbury

BRUKER SPECTROSPIN LIMITED
Unit 3, 209 Torington Avenue, Coventry CV4

We are leading specialists in computer numerical control
systems for machine tools an expanding firm in an
expanding technology. We are currently building larger expanding techology. We are currently building larging
premises and adding to our workforce to meet increasing premise
sales.

TEST ENGINEER
To test for and repair faults, down to component level, in
our C. . C. systems; and to construct and maintain associated test equipment. Applicants should be of H.N.C. standard, and have substantial test experience in a logic-
based electronics industry (ideally with involvement in based electronics industry (id

PROTOTYPE

WIREWORKERS For assembly and wiring of consoles and control panels,
and in-house test equipment, working from circuit dia and ins-house tuse preparation of associated wire-run sheets, etc Applicants should be experienced in prototype work on
P.C.B.s and wiring in cabinet enclosures; ideally with P.C.B.s and wiring in cabinet enc
O.N.C./C.\&G. electronic engineering

We can offer excellent conditions and career pro spects to the right men and women. Why not ring
Alison Peirson on Basingstoke 29303 for full details?

POSIDATA LTD
Rankine Road, Danesh OP

CHIEF TECHNICIAN

Digital Systems Enfield. Up to £6,042
We require a Chief Technician to be based at Tower
Point, Enfield. The work is both varied and interesting, involving the mapervision of a smale team responsible of Data Terminal Equipment associated with the Regions Communications network. Consid rable travel throughout East Anglia will be involved You should be qualified to HNC/HND standard and
ideally have experience of computer based control or management information systems.
Salary within the range $£ 4,833$ - $£ 5,712$ plus $£ 330$ productivity payment and the benefits normally associated with a large progressive organisaiton. Please write, quoting reference 9360 , for an application form to the Senior Recruitment officer, Eastern Gas, Star
House, Mutton Lane, Potters Bar, Herts. EN6 2PD. Tel. Potters Bar (77) 51151, ext.

EASTERNGAS
TOP JOBS IN ELECTRONICS Posts in Computers, Medical,
Comms, etc. ONC to Ph.D. Free
service Phone or write: BUREAUTECH Phone or write BUREAUTECH
AGY, 46 SELVAGE LANE, LON'DON, NW7. 01-959
3517.

 ono of
Cadida
years
en
 Assistance e with the cost of moving house witions, progressive salary sca

Professional Careers in Electronics

All the others are measured by us...

 At Marconi instruments we ensure that the very best of nnovative design is used on our range of communications test instruments and A.T.E. We have a number of interesting opportunities in our Design,Production and Service Departments and we can off attractive salaries, productivity bonus, pension and sick pay schemes together with help over relocation. you are interested to hear more, please fill in the rollowing detai

Test Engineers

Pye Telecommunications are a well established company, involved in the field of radio communications, both at home and overseas. The Pye trademark is synonymous with systems that are highly reliable. To ensure that reliability, we need Test Engineers to check our VHF/UHF systems to very exacting specifications prior to delivery
We are looking for skilled men and women with experience of fault diagnosis, alignment and testing of electronic equipment, preferably communications equipment. Formal qualifications are desirable, but less Armed Forces experience would be particularly acceptable.
We can offer you job security and long term career opportunities, both and Philips Group as a whole Our salaries are competitive and we offer up to 4 weeks 3 days annual holiday Attractive additional benefits include contributory pension scheme, good canteen facilities and assistance with relocation expenses where appropriate We currently have vacancies at our site in Cambridge, and at Haverhill in possibility of Aaverhill there is the Authority housing
If you are interested please contact Mrs. C. M. Dawe, Senior Personnel Simited, Colio Vallecommunications Suffolk, Coll Suffor.
Tel: Haverhill 4422
for vacancies at Haverhill

Ann Maxwell, Personnel Department Pye Telecommunications Limited St. Andrew's Road, Cambridge CB4 1 DW..
Tel : Cambridge (0223) 61222 for vacancies at Cambridge.

Pye Telecommunications Ltd

Assistant Components Engineer

Ultra Electronic Communications Limited, members of the international Dowty Group, are world leaders in the design
and manufacture of sophisticated ASW sonar buoys and and manufacture of sophisticated A
other advanced radio location devices.
We have a vacancy for a technician to join our expanding instrument department to carry out repairs
and preventative maintenance on our varied laboratory indtruments (G.C.C. H.P.L.C. spectrophotometers, mass
spectrometer) In addition the technician would liaise spectrometer). In additito the technician would liaise
with laboratoy staf it the essign and construction of
custom built titems of equipment.

We are now looking for an electronics engineer with sound understanding of circuit principles to assist with
selection of electronic components for use in a wide variety selection of electronic componitis will be to obtain com-
of projects. Main responsibitites woth ponents and devices for use in both new development and
production equipment, and to find suitable alternatives production equipment, and to find suitable aternative
where specified types have become obsolete. This will require an ability to identify and match critical componen parameters and to understand complex equipment
requirements. requirements.
Although we would prefer H.N.C. Level of
qualificitaios, we will certainly consider applicants with
the qualicatis. aporiat level of background and experience.
the
Initial salary would be related to qualifications and experience and the fringe benefits include a non-contributory pension scheme, free life assurance
and B. U.P.A.

Please telephone for an application form or write giving brief details of experience
Mrs. Doreen Robilliard
Erl Wood Manor, Windlesham, Surrey
Telephone: Bagshot 73631
Applicants, male or female, should be qualified to HNC an have had sound practical experience of either compone
selection or of electronics design and development work.
We are offering an attractive salary, excellent conditions of employment and first-class bene
with relocation where applicable.
Please write or telephone Mr. Gavin Rendall, Personne Manager, Ultra Electronic Communications Ltd 419 Bridport
$01-5780081$.

IIIIY reffanch Cewrit

Ready, Steady, GROW!
Jin a small company that has doubled its profits for each of the last 3
years and grow with ofint.
Electronics Test Engineer
Electronics Test Technician
Telephone or write to Bill Harmsworth, Rofin Ltd., Winslade
House, EEham Hill, Egham, Surrey, TW20 OAZ. Tel: Egham
(07843) 7541 . (07843) 7541).

AUDIO + VIDEO LTD. VIDEO \& TELECINE 0 OPERATORS

required for Ampex and RCA Quad VTRs and Sintel and RCA Telecine Channels for both our day and night shifts. Persons with requisite television engineering background may

Contact:
Peter Horton
Audio + Video Limited
48 Charlotte Street, London W 1P 1LX
Tetephone: $01-5807161$

Electronic Communications

UNIVERSITY OF LONDON

IMPERIAL COLLEGE OF SCIENCE AND DEPARTMENT TECHNOLOGY

RESEARCH OFFICER

A really competent Research Officer is required to develop facilities for Electronics and Microprocesso Research to complement the computing and hardware
teaching and research laboratories in the department.

The work will involve the design and construction of variety of electronic apparatus much of it microprocesso based. The successful applicant should have wide experience in the design and maintenance of digita background.
Hours are 09.00 to 17.30 , five-day week, five weeks paid annual leave, as well as an extra week at both
Christmas and Easter. Salary in the range of $£ 4.631$ to $£ 6,555$ plus $£ 502$ London Allowance. Typed or handwritten applications should include a résumé of qualifications and experience as well as personal details
and the names of two referees, and should reach Mr. M. and the names of two referees, and should reach Mr. M.
D. Cripps, Department of Computing and Control, D. Cripps, Department of Computing and Control,
Imperial College, University of London, London SW7 2AZ (Telephone 01-589 111, Extn. 2750) as soon as possible.

MONEY TALKS

 Of course does - "Job Satistaction" doesn"t pay the mortgage and thefamily cannot eat "atrractive tringe benefits." Some of our clients are awar of this. CURRENT VACANCIES INCLUDE 1) SENIROR DESIIN DEVELOPMENT ENGINEES For a microproces
sor controled mbobil radio command and control system. Digital engineers
 Analogue Engineers - exp. eithe
or modems to 88.000 . Middlesex 2) DESIGN ENGINEER
 3) MICROPROCESSOR / MINICOMPUTER SYSTEMS ENGIN EERS for hardware / sottware used in process control. Very varie
technology, including tightiy coupled Multi-Microprocessors. Berks to 4) ${ }^{\text {fa }}$) 50 .
4) COMPUTER ENGINEERS FOR: Technical Support, Commissioning
Fiedd Service Permament Site and Systems Test. Vacancies most fere
 with 1 BM 370 CPU exp.
5) R.F. EQUUPMENT DESIGNERS, $25 \mathrm{MH}-500 \mathrm{MH}$ for products which
are exceptionally reliable and cost effective - Devon to $£ 7.000$ 6) YOUNG ENGINEER controlled underwater surwailuate standard for operation of remotely eleacronic / electrical maintenance and assist ins development of the new
generation of equipment. Offshore experience an advantage. Sussex to
en.5o. WANTED URGENTLY

Appointments

ELECTRONICS ENGINEERS

c. $\mathbf{£ 6 , 0 0 0 ~ + ~ B O N U S ~ + ~ F R E E ~ M E A L S ~}$

Due to further expansion and internal promotions we urgently require Senior Test Engineers.
We rent a wide range of sophisticated electronic test equipment, including Microprocessor based instruments to companies of international repute.
Applicants must have a good all round knowledge of electronic est equipment. Engineers with experience of the following F. Tes Equipmet including Sperrm Analys Oscilloscope
Digital Voltmeter
Acoustic Equipment (B \& K, C.E.L. etc)
Whilst academic qualifications to H.N.C. are desirable emphasis will be placed upon ability. Generally suitable
applicants will have had at least three years'' directly related experience.
The vacancies are internal and based at our modern fully equipped premises in N.W. London
The test equipment we stock is the finest available in the world ments to repair and calibrate these equipments.
Write or telephone to
Bernard Ellett
LIVINGSTON HIRE LTD.
Shirley House, 27 Caíden Road, London NW1 9NR
Tel. 01-267 3262 Tel. 01-267 3262

Radio City, Merseyside's 24 -hours-a-day Independen

ASSISTANT CHIEF ENGINEER

This new appointment is for a fully experienced Senio Engineer to take charge of all Maintenance of station Substant plus some installation work
abulatial practical experience of servicing broadcas equipment and organising maintenance schedules is

Fullest details please, in strictest confidence to
Managing Director RADIO CITY
(Sound of Merseyside) Ltd. P.O. Box 194 LIVERPOOL L69 1LD

Technician/Engineers

We require additional Technician/Engineers in the
VIDEO-TAPE SECTION at our Midlands studio centre in Birmingham.
OurV Section is a very active unit, handling studio and transmission requirements for a busy station with a wideranging programme output. The standards are high and
the job offers satisfying technical involvement covering machinemaintenance as well as operation. Presentand planned equipment includes AVR3, ACR25 and VPR2 machines in addition to VR2000's, plus computer-based editing facillities
We need people with a thorough understanding of
colourTV principles and practices together with relevant engineering experience (preferably in a broadcast or engineering experience (preferably in a broadcast or
CCTV studio): equipment would be an asset.
Theamenities and conditions at ATV Centre are good, andworking relationships are co-operative and informal.
Starting salary up to $£ 5973$ per annum according to qualifications and experience with further progression to £ 6783 ;per annum (ACT Agreement).

APPLICATION FORMS are available from
Head of Staff Relations,
Head of Staff Relations,
ATV Network Limited, ATV Centre,
Birmingham B1 2JP.

SITUATIONS VACANT

Electronics Technicians

The job?	* Servicing and calibrating complex electronic equipment.
How much could I earn?	* $£ 5000$ plus per annum.
Overtime at premium rates	*YES
Other benefits	*Generous Holidays increasing with Service * Sick Pay * Superior Pension Scheme * Restaurant * Relocation assistance, etc. etc.
Where?	* Neasden, n.w.10. (Opposite the Underground Station, and close to the M.1.)
ed?	*CONSIDERABLE practical knowledge and experience of electronic circuitry faults diagnosis and rectification

For further information please telephone, call or write to F. F. Honnor Personnel Manager lectral House, Neasden Lane
ondon NW101RR.
Bradley Electronics
 19" rack. Auto Charger.

Classified

SOWTER TRANSFORMERS

WOLLENSAK - HIGH SPEED CASSETTE DUPLICATORS SPECIAL PROMOTIONAL PRICES		
model	Normal	special
2790-Mono, 1 Master 12 Co		
270-Mono, 1 Master $/ 2$ Copies 2772-Stereo, 1 Master $/ 2$ Copies	1339 1498	1102
	1498 1145	
$2780-$ Stereo, slave-3 Copies	1145 1287	
For further details telephon Fraser-Peacock Associates SW195EG		

ICLES FOR SA		APACITY AVAILABLE	
EXCLUSIVE OFFE			PCBs Production runs or prototypes
		I.H.S. SYSTEMS Due to expansion of our manufac turing facilities we are able to under-	
		contract development.	
	 Eight vertical colour bars plus	engineers to call and discuss your requirements, or send full details for a prompt quotation	
	KIT (MK4) UHF Aerial input type. Eight vertical colour bars plus , R-Y, B-Y	TEL. 01 -253 4562or reply. to Box No. WW 82(8237)(8)	
	scale etc. Pushbutton controls. 		
			PRoduction runs
	CROSS HATCH KIT, UHF Aerial nput type, also gives peak white nd black levels. Battery operated		
			ardner industrialestate NT HOUSE LANE CKENHAM KENT BR3IUG
		ELECTRONIC CIRCUIT Design and prototype construction productionassembly. Test and PCB artwork design, Write: Powerline Electronicis, High Street, Bognor Regis, 024-32 (Pagham) 66587 evenings.	
We have a large quantity of "bits and pieces" we ca list - please send us your requireme probably help - all enquiries answered.			CKENHAM KENT BR3IUG
			-acialised PCB
	tape recording f6. $80 \mathrm{p} / \mathrm{p}$ 70p. Decca		Layouts - Photogrephy - Driliti
			Roller Tinning - Gold Plating
			egend Printing - Profliling pocial quick prototype service
			Crofton Electronics Limited 35 Grosvenor Road, Twickenham Middlesex - Tel: 01-891 1923
	unit E4.80 p/p fi. Bush CTV 25		
	(lateral		
	Plessey, ${ }^{56} \mathrm{p} / \mathrm{p}$ 90p. Mullard AT		
			Electrical maintenance
		erable amount of good quality	lectrical maintenance
	Tripler $86.60 \mathrm{p} / \mathrm{p} 75 \mathrm{p}$. Others avanl- 	test gear including Tektronic scopes at silly prices.	Temperature
Smitur			
			ectrical design
		and discuss your requirementits.	ntact:
		fton Electronics Ltd.	
		35 Grosvenor Road wickenham, Middlesex,	A.D.P.
			SERVICES LTD. St. Helens 50564
		ALE	IGN SERVICE. Electronic De-
边			Anitoguemitters and Receiterss for control of
	Mullard Mono Scan Coolls for		
		PROBLEMS?	mitters and $\begin{aligned} & \text { any function at any range. Tele- }\end{aligned}$ metery, Video Transmitters and
	 tion LOPTS, FOPTs available for	-1 KVA Prototypes in $7-10$ days. ne Vince Sellar on 06076	Sels
WiANUALSWe have a quantity of Technical Manuals of ElectronicEquipment, not photosiats. 1940 to 1960. British and Equipmont. not photossatass. 1940 to 1960 . British andAmerican. No lists. Enquiries invited.	Callers welcome. Thousands of additional items available not normal	TRENT TRANSFORMERS LTDChapel StreatLong Eaton, Nottm.	
	$\underset{\text { Marconl }}{\text { VTVM MOD. }}$ precision camera coill $\frac{E 1000}{}$ 		
			EQUIPMEN
We have a variod assortment of industrial and professional Cathode Ray Tubes available. List onrequest. requer.			
PLEASE ADD CARRIAGE AND Y.A.T. P. HARRIS ORGANFORD, DORSET, BH16 6BRBOURNEMOUTH (0202) 765051 76505			
	WIRELESS WORLD in three batches offers. W. Sheppard ${ }^{163}$Road, London N18 18 QG .		We purchase all. types of Mechanical and Electronic Equipment and Surplus stocks.

MICROPROCESSORS

at the IEE, SAVOY PLACE, LONDON, on July 5 and 6, 1979

AIM OF THE COURSE

hee principal aim of the course is to expose participants with little or no direct experience of microprocessors to step-by step procedures for the
design and implementation of microprocessor-based systems. The course will also be useful to academics who plan to teach microprocessors and
and to perssons with software or managerial background who wish to acquire a working knowledge of hardware components of
microorocessor systems Although no previous knowledge of microprocessors will be assumed some pre-course reading is advised. Relevant literature will be sent on
An MAIN TOPICS
INTRODUCTION. The microprocessor as a chip. Semiconductor memories. Interfaces Design philosophy. Design steps.
TEST-AND-SKIP SYSTEMS. The test-and-skip concept and its apolication to
EST-AND-SKIP SYSTEMS. The test-and--skip concept and its application to microprocessor systems. Step-by-step development of a basic
configuration. Design and implementatioń procedures. Design problems.

WAIT-GO SYTEMS. The wait-go concept and its application to microprocessor systems. Step-by-step development of a basic
contiguration. Design and implementation procedures. Design problems. Design of wait-go logic. INTERRUPT SYSTEMS. The interrupt concept and its application to microprocessor systems. Flags and flag sorters. Step-by-step
development of a basic contiguration. Restart and call procedures. Design problems. Design of interrupt logic. DMA syst.
Configuration. Design and implementation procedures. Design problems. Design of cycle-steal logic.
concel

Programming will be discussed from the engineer's rather than the programmer's point of view.
In-house courses mays specific questions.
Alberta, Canada T2N 1 N4.
DDT SYSTEMS. The d.d.t. Concept and its application to microprocessor systems. Step-by-step development of a basic configuration.
Design and implementation procedures. Design problems. Design of front-end logic. MICROPROCESSOR DEVELOPMENT SYSTEMS. A development system will be designed "from scratch" in class to serve as a
framework of reference for commercially-available systems. framework of reference for commercially-available systems.
MULTI-PROCESSOR SYS.
. Miti-processor systems. Design problems. FEE. $£ 80$ plus....VAT - includes course material. Members of Academic Institutions (Universities, Polytechnics, Colleges and Schools) are
entited to a 50% fee reduction ($£ 40$ plus . . VAT). For information please contact Miss Amanda Pearce, Peter Perigrinus Ltd., Savoy Place, London WC2R OBL. Ref. MJ56/WW. Telephone
$01-2401871 \times 269$.
 * Used by professional engineers, D.I.Y. World-wide proven reliability. Low servicing costs. * $20 \mathrm{~K} /$ volt sensitivity and high accuracy * Large mirror scale meter * Fully protected against overload. * Large range of inexpensive accessories. * 12 month warranty, backed by a full after
sales service at E.B.Sole U.K.Distributors Prices from $£ 16.60-£ 32.00+$ VAT Send for full colour leaflet and prices on whole range including accessories 1 =1 = BLECTRONIC 49-53 Pancras Road, London NWW1 $20 B$.
Tel: 01-837 7781. Telex: 298994.
I.C.E.
$W W-104$ FOR FURTHER DETAILS

INDEX TO ADVERTISERS
Appointments Vacant Advertisements appear on pages 141-159

Wireless World, June 1979

ww -002 For further detalls

OTS-2, a forerunner of a European communications satellite, was launched from Cape Canaveral on May llth 1978.

Now orbiting the equator at a height of 23,000 - miles, OTS-2 was built for the European Space

- Agency by the MESH consortium, led by British Aerospace Dynamics Group, Stevenage .
In building OTS-2, complete precision was called for. Which is why Elsin Multicore solders were used for many of the soldering operations.

Quite simply, Multicore solders have that kind of reputation. For quality, toŭghness and reliability. That's why so many electronics manufacturers won't use anything else. :
Next time you need solder of any kind, aim as high as OTS-2 \ldots and use Multicore:

Full details of Ersin Multicore solders, solder chemicals and high purity-bar solderş for automatic soldering from

Multicore Solders Ltd
Maylands Avenue
Hemel Hempstead Herts HP2 7EP

- Tel: Hemel Hempstead 3636

Telex: 82363

[^0]: Overseas Agents and Distributors.
 The Netherlands. Reinaert Electronics. Blasiusstraat 14-16. 1091 CR Amsterdam, The Netherlands.
 $\begin{array}{ll}\text { Denmark. Transcan Electric APS. Mollevaenget 15. 2970 Horshoim, Denmark. } \\ \text { Kenva. } & \text { United Import Agencies. PO Box 4391. Nairobi, Kenva. }\end{array}$
 Kenya.
 Middle East.
 United Import Agencies. PO Box 43951. Nairobi, Kenya.
 EPIC. Electronic Precision Instrument Company, PO Box 1262.
 EPIC. Electronic Precision Instru
 Cairo, Arab Republic of Egypt.
 Applications are open for Overseas Agents and Distributors.

[^1]: wW - 072 FOR FURTHER DETAILS

[^2]: ESHURE
 Shure Electronics Limited, Eccleston Road, Maidstone ME15 6AU ics Limited, Eccleston Road, Maidsto
 Telephone: Maidstone (0622) 59881

[^3]: $$
 1
 $$

 $$
 1.1
 $$

[^4]:

[^5]: Continued on page 64

[^6]: \qquad

